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1. Introduction 

Boundary-value problems of mathematical physics were addressed in the end of the XVIII – 

beginning of the XIX centuries in the fundamental works by J.L. d’Alembert and J.B.J. 

Fourier. For more than two centuries they have been one of the most important trends in 

mathematical modeling applied to engineering calculations. Let us first trace the development 

of methods of boundary-value problem solving and outline the difficulties and obstacles, 

which the authors of these methods confronted with. 

In general view we will present the statement of linear boundary value problem in the 

following way. It’s required to find the function  xU , satisfying within some domain 

3RD   the partial differential equation 

                      DLUL  xxx ,*
                                                        (1) 

and on the surface S  of D  satisfying the boundary conditions 

    SBUB  xxx ,*
                                                       (2) 

where L  and B  are linear differential operators with constant coefficients;  x
*L  and 

 x
*B  are given functions of position x . 

According to Fourier method of separation of variables, solution of boundary value 

problem (1)-(2) is constructed in the form of infinite sum  
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where nc  are constant coefficients, and )(xnU  are functions of coordinates x . 



The sum (3) is an analytical expression, which identically satisfies the differential equation 

(1) and the boundary condition (2). Therefore, it is said that it is the exact analytical solution 

of the boundary value problem (1)-(2). 

In XIX-XX centuries by means of Fourier method a number of exact analytical solutions of 

boundary value problems were successfully found for the simplest domains: circle, sphere, 

cylinder, parallelepiped, infinite slab, etc., called canonic domains. For more complicated 

computational domains, which occur in engineering practice, the use of Fourier method faced 

serious difficulties. So, mathematicians simplified the task. Instead of finding exact analytical 

solutions they began limiting themselves to finding approximate analytical solutions of 

boundary value problems. These approximate solutions differ from exact solutions by some 

small error value )(ε x . Three groups of approximate analytical methods appeared. 

1. Ritz type methods. 

Solution of the boundary value problem (1)-(2) is constructed in the form of finite sum 
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such that it approximately satisfies the differential equation (1) and identically satisfies the 

boundary conditions (2). 

2. Trefftz type methods. 

Solution of the boundary value problem (1)-(2) is constructed in the form of finite sum (4) 

such that it, as opposed to Ritz method, identically satisfies the differential equation (1) and 

approximately satisfies the boundary conditions (2). 

3. Reissner type methods. 

Solution of the boundary value problem (1)-(2) is constructed in the form of finite sum (4) 

such that it approximately satisfies the differential equations (1) and the boundary conditions 

(2). 

In such simplified statement boundary value problems for non-canonic domains had been 

solved up to the middle of the XX century. Notably that with the development of 

approximate analytical methods, error estimation methods of approximate solutions also 

developed, that was extremely important for applying found solutions in engineering 

practice. 

The emergence of high-speed computers in the middle of the XX century gave new 

opportunities and opened up new prospects for using approximate analytical methods. 

However it turned out that they were less effective in comparison to an alternative approach, 

which happened to be more adapted to the use of computer machinery. It turned out that if we 

split the solution domain of a boundary value problem into a set of small sub-domains, and 

for every sub-domain we introduce conjectures, reducing physical characteristics of the 

continuum, the process of differential equation integration can be traced to a set of simple 

arithmetic operations – additions, subtractions, multiplications, divisions. Thus it became 

possible to solve boundary-value problems of mathematical physics by means of computers 

with «brute force approach», finding solution not by way of analytic formulae, but as arrays 

of numbers. Numerical methods of the boundary value problems solution replaced classical 

analytical methods. It so happened because numerical methods proved out to be more easily 

formalized and programmed. Soon one more advantage of numerical methods over analytical 



methods was found: computer programs, implementing numerical methods, and developed 

for solving one boundary value problem, without any sufficient alterations were suitable for 

solving other problems, belonging to the same class. As for algorithms, based on analytical 

methods, they were not so all-purpose. 

Above-mentioned circumstances resulted in that on the modern market of software, 

designed to solve boundary value problems, there are a great number of all-purpose software 

packages, based on numerical methods, such as ANSYS, СOSMOS, LS-DYNA, NASTRAN, 

PATRAN, FEMLAB, APM WINMACHINE, BEASY, and virtually there are not any 

software packages, implementing analytical methods. 

Thus, by the beginning of the XXI century the development of methods of boundary value 

problem solving resulted in the situation when the vast majority of engineering problems are 

solved by means of all-purpose software packages based on numerical methods. These 

packages let engineers find numerical solutions of boundary value problems of almost any 

complexity. But another serious problem emerged: generally it is not possible to estimate 

accuracy of such numerical solutions for complicated engineering problems. In the book by 

L.N. Yasnitskiy and T.V. Danilevich “Modern problems of science” [1] this paradoxical 

situation is called “modern crisis of applied mathematics; crisis, which, judging by 

catastrophic growth of technogenic accidents and disasters, threatens to escalate into crisis of 

modern civilization”. 

The thing is that solutions received by numerical methods represent arrays of numbers, 

errors of which can be estimated only by the way they behave with the growth of element 

number the domain divided. It is usually supposed that results can be trusted if they stop 

changing with the mesh refinement. But theoretical inconsistency of this opinion was shown 

long ago. Firstly, the theorems, according to which the approximate computational solutions 

converge to the exact ones, are proven under such conditions, which are rarely fulfilled in 

engineering practice. Secondly, with the refinement of the finite element meshes, the 

condition number of resolving linear equation system always increases. So in case of solving 

two-dimensional boundary value problems for second order differential equations and 

application of uniform mesh with linear shape functions this dependence is used: 

                                
2 Ch                                                               (5) 

where   – spectral condition number of the system of linear equations, h  – maximum size 

of finite element, C  – is a constant that depends on the specificity of the problem. According 

to this formula when h  decreases,   increases. It means that the system of linear equations 

becomes ill-conditioned: slight changes of the matrix coefficients lead to significant changes 

in system solution. It means that errors connected with matrix coefficient rounding in 

computer calculations, or errors introduced into these coefficients during the process of its 

formation affect the result of system solution. And it means that when 0h  approximate 

finite element solutions do not converge to the desired solution of boundary value problem, 

as it is schematically shown in figure 1. 

It follows from this analysis that the results received with numerical methods should be 

treated carefully. Exactly the problem of error estimation is the most serious drawback of 

numerical methods, and it makes the search for the new methods and approaches more actual. 



 
Figure 1. Typical dependency of the numerical solution of the boundary value problem from 

the maximum size of finite element h . 0U -exact problem solution. 

 

2. Errors of approximate analytical methods 

Let’s try to compare analytical methods from the point of view of their reliability. 

We will start with Trefftz Method. According to what has been said, the solution received 

with this method identically satisfies differential equations (1) and approximately satisfies 

boundary conditions (2). 

It means that instead of solving boundary value problem (1)-(2), this method leads to the 

exact solution of another boundary value problem with changed boundary conditions: 

                    DLUL  xxx ,*
                                                    (6) 

                   SBUB  xxx ,**
                                                    (7) 

The difference between the given condition  x
*B  and changed boundary condition  x

**B  

in each specific case can be easily found.  It is always possible to substitute the solution 

received with Trefftz method into the left part of the equation (2) and after making 

calculations of this part on the boundary of solution domain, when ( Sx ), to recreate the 

statement of the changed boundary value problem, which was exactly solved with Trefftz 

method.  And finally it is always possible to evaluate the replacement of boundary value 

problem (substitution of the given boundary value problem (1)-(2) for the changed boundary 

value problem (6)-(7)) from the engineering point of view. And if this substitution is possible 

from the engineering point of view the solution errors received with Trefftz method should 

not be discussed at all. 

If for example we needed to calculate the temperature in some object, on the surface of 

which the given temperature is 500оС. Using Trefftz method we will find the function   xU  

which identically satisfies boundary value problem differential equations and on the surface 

off the object boundary conditions are hold approximately. For example when calculating the 



value of the function   xU  on S , we see that instead of 500 оС the function  xU  changes 

its value within 499оС to 501оС. So the difference between the given boundary condition of 

the temperature  x
*B  and the boundary condition of the changed boundary value problem 

do not exceed 1оС. And if these temperature perturbations on the surface of the object are 

acceptable from the engineering point of view, we can change the statement of the problem, 

replacing  x
*B  with  x

**B  and state that the problem is solved without errors at all. 

So this method allows to receive exact analytical solutions of the boundary value problems 

but not the given ones but those which differ with their boundary conditions with a slight 

value and this difference in every specific case can be easily evaluated. 

Now let’s appeal to Ritz Method. Reasoning the same way, we see that applying this 

method leads to the exact analytical solution of the following boundary value problem: 

                                   DLUL  xxx ,**
                                                        (8) 

                              SBUB  xxx ,*
                                                        (9) 

This problem statement differs from the given boundary value problem with the different 

form of differential equation. But as opposed to the previous case, here the possibility of 

substituting the given problem (1)-(2) with the changed one (8)-(9), is not so evident from the 

engineering point of view. The same conclusion can be made in case of using Reissner 

method. 

So among the whole taken analytical methods, Trefftz method is the most reliable one for 

solving boundary value problems. 

 

3. Trefftz method and its development 

Let’s study the history and the problems of applying Trefftz method more properly. 

This method was presented by German mathematician and mechanic Trefftz in 1926. In his 

speech on The Second International Congress on Technical Mechanics in Zurich he presented 

his analytical method of solving boundary value problems, the essence of which is enclosed 

here. 

Let us find function )(xU
 
satisfying Laplace’s equation within some domain 

3RD    

0)(  xU ,     Dx                                                        (10) 

and on the boundary S  of domain D  satisfying boundary conditions 

    SBU  xxx ,*
                                                       (11) 

According to Trefftz method solution of the boundary value problem is searched as the 

following sum  
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Where )(xnU
 
are basis functions of coordinates that are chosen in such a way that each of 

them identically satisfies differential equation (10), and nc are constant coefficients 

determined by the minimization of functional 

dDgradUUJ
D
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that is equal to the boundary conditions (11). 

As each item of the sum identically satisfies the differential equation, the whole sum has 

this characteristic. Thereby the solution of the boundary value problem )(xU  identically 

satisfies the differential equation and after the minimization of functional (13) it 

approximately satisfies the boundary conditions (11).  As it was mentioned above, this 

magnificent feature of Trefftz method makes it different from other approximate methods and 

it is a serious advantage of the method, which is especially significant in modern conditions, 

where the quality and reliability of computational results are of great importance. 

The approach suggested by E. Trefftz in 1926 at those times was the cause of the series of 

scientific works dedicated to the issues of its development and application. Among them we 

should mention fundamental works by E. Reissner, L. Leibenzon, S. Mihlin, M. Birman, G. 

Grinberg, L. Collatz. However, in spite of the unique features and attention of 

mathematicians, Trefftz method had been remaining useless for a wide practical application 

for a long period of time. The point is that the problem of selection of basis functions 

)(xnU that satisfy the differential equation of the boundary value problem and that provide 

the convergence of the method remained unsolved. Only in rare cases by means of increase 

of the basis functions number N  it was possible to decrease difference between  x
*B  and 

 x
**B  to the acceptable values and thereby justify the possibility of substitution of the 

given boundary value problem (1) – (2) by the altered boundary value problem (6) – (7). As a 

result the success of application of Trefftz method completely depended on experience and 

intuition of the mathematician and sometimes even on luck. 

Geometrical interpretation that was developed in 1973 [3] made it possible to examine the 

problems of convergence and correctness and to set up the technique of basis functions 

choice, that ensure the success of the use of Trefftz method. The essence of geometrical 

interpretation can be illustrated by an example. Let us assume that the stress-strain state of 

elastic body D  that is depicted in fig.2 (a) is needed to be calculated. Displacement or (and) 

stress boundary conditions on surface S  of body D  are assigned.  



 

a                                             b                                                    c 

Figure 2. Given body D  (a) is mentally immersed in canonic region V  (b) or in the crossing 

section of several canonic regions: 321 VVV   (c) 

Alongside with D  some fictitious canonic region V  is introduced, within which the 

contours of a given body are mentally (on fig.2, b – in dotted line) distinguished. By virtue of 

the fact that the region V is canonic, then the solution of differential equation (for example, 

equations of the theory of elasticity) may be set up for this area by means of Fourier method. 

The above mentioned solution takes the form  
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where )(xnU  are functions of coordinates, which by reason of a specific character of 

Fourier method, identically satisfy differential equation, and nc  - are constant coefficients, 

determined by the boundary conditions on the surface of region V . 

This solution is general in the sense that by selecting values of coefficient nc  some partial 

solutions may be pointed out from the general solution. These partial solutions can satisfy 

sufficiently arbitrary boundary conditions on the surface of body V . If we now produce such 

loading P  on this surface that on the boundary of body D  there will be displacements or 

(and) stresses, that satisfy given boundary conditions on surface S , then the solution for V, 

that fits loading P  will be at the same time the solution of the original problem for body D . 

The latter is just by virtue of the fact that partial solution pointed out from (14) satisfies 

within body D  elasticity equations and on its surface it satisfies given boundary conditions.  

From the mathematical point of view the objective of the loading of fictitious body V  is 

implemented by selecting coefficients in sum (14) that provide the fulfillment of given 

conditions on S . If we take a finite number N  of row summands (14), the problem may be 

solved approximately by minimizing the functional of boundary conditions. The latter may 

be formulated with the help of Trefftz method (13) by using energy representation or by 



means of least squares method etc. 

The above mentioned geometrical interpretation to Trefftz mathematical apparatus made it 

possible to understand physically and account for the reasons of many unsuccessful attempts 

of its use. For example if body D  on fig.2 had internal holes filled with high pressure gas 

then the formation of such boundary conditions on D  by means of matching of loading P  

of fictitious body V  would be hardly possible. By intuition we can guess that V  should be a 

multiply connected region, but we will discuss it later. Now it should be pointed out that 

geometrical interpretation that for the first time was brought out by L.N. Yasnitskiy in his 

scientific work [3], made it possible in this work to give a definition and the first proof of the 

convergence theorem, to suggest a choice-technique of basis functions and also to suggest 

and give a proof of error estimation method for solutions of boundary value problems, i.e. to 

lay theoretical basis for mathematical apparatus, which later was named a fictitious canonic 

region method (FCRM) [4].  

Now let us turn our attention to this method in more detail. The essence of choice criterion 

of fictitious canonic region consists in requirement of extendability of the original problem 

solution within region V . Under the term “extendability” we understand the possibility of 

extension of the original problem solution (as a function satisfying differential equations of 

the problem) beyond the boundaries of computational domain D  to the whole space, which 

is occupied by bigger domain V . Moreover V  is implied as a minimal domain that contains 

body D and belongs to the set of regions, for which the series expansion (14) is valid.  

As a separate canonic region V  (fig.2, b), and an intersection of several canonic 

regions can be chosen KVVVV  ...21  (fig.2, c). In this case instead of (14) the 

sum of K  decompositions is used, referring accordingly to KVVV ,...,, 21 . 

The criterion of choice of the fictitious canonic regions is based on that, when meeting 

the condition of extendability of the original problem solution within V  this solution is the 

sum of basis functions for V . So the expansion (14) (or the sum of K  expansions in case of 

superposition of fictitious regions (fig.2, c)) for limited N  is a segment of the series and for 

it appropriate convergence theorems are applicable. If there is no extendability, so there is no 

such series. The sum of the right part of the formula (14) can be considered only as a linear 

combination of functions )(xnU  approximating in D  the original problem solution. But for 

this approximation the problem of finding coefficients nc  is not correct by Hadamard. In this 

case, it is proved by S.J. Guzman [5] that when increasing N  some of coefficients nc  grow 

unlimitedly. It means that during the practical calculation on computers it is impossible to get 

the solution of the problem with error, that is lesser than some positive number 0 , dependent 

on original boundary value problem and computer memory. 

The failure of extendability can happen because of some singularities, points where the 

original problem solution becomes infinite or discontinuous, has discontinuous derivatives 

etc. As a rule, in real boundary value problems singular points of solutions are located out of 

domain D  (fig.3) or on its boundary. So, the task of choice of the fictitious canonic region 

is: 

1. To predict possible places of singular points. 



2. To locate the fictitious canonic region in that way when singular points of 

the original problem solution will be out of the region V  (or on its 

boundary). 

 

Figure 3. The exact solution of a boundary-value problem, which exists within domain D  

and beyond its limits. Singular points n,...,,  21  (where the function ).( yxU  becomes 

infinite) located out of domain D . 

 

 Let us show the method of choice of fictitious canonic region in following problems. 

 Problem 1. Laplace equation for plane domain D  on fig. 4 needs to be solved, so it is 

known that the problem solution has a singular point  , located near D . 



 

a                                                b 

Figure 4.  Given domain D  (a) is placed into the circle V  (b).  –  a singular point of the 

problem solution. 

 As fictitious region V  in this case a circle can be used as an example, for which the 

solution of Laplace equation found by Fourier method of separation of variables [6] is the 

following: 
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where r ,   - polar coordinates, na  and nb   -  constant coefficients. According to the 

criterion of extendability the circle should be placed in such a way, that it contains domain 

D  and does not contain the singular point  . The example of such an arrangement is shown 

in figure 4, b. 

 

a                                                   b 

Figure 5. Given domain D  (a) is immerged into circular domain V (b) 

 



Problem 2. In figure 5, а it is an example, when it is impossible to choose a circle 

satisfying the criterion of extendability. So as V  in fig. 5, b a circular region is offered, for 

which (under [6]) the solution of Laplace equation is the following: 
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a                                                          b 

Figure 6. Given domain D  (a) is immerged into region of intersection of two fictitious rings 

1V  and 2V  (b) 

Problem 3.  In figure 6, a a more complicated case is shown, when near domain D  there 

are two singular points 1  and 2 . In this case, neither circle nor ring fit for it, so here the 

method of superposition of fictitious canonic regions [7] is recommended: D  is immerged 

into the intersection of two ring regions 21 VVV  . The expansion for V is the sum of 

two series: 

  21 UUU                                                             (17) 

The first  
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belongs to region 1V , and the second –  
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belongs to region 2V . 



As follows from the fig. 6, b, singular points 1  and 2  turn out beyond the limits of the 

intersection of fictitious rings and so the original problem solution is extendable into 

21 VVV  . 

In all examples fictitious canonic regions are chosen and placed in that way, that the 

condition of the main theorem of FCR method (extendability theorem) is fulfilled – that 

provides the convergence of the method, and so the successful solution of a boundary – value 

problem. Seemingly, the theoretical basics of FCR method can be considered to be formed. 

But, the following problems remain to be unsolved: 

1. Singular points of the original problem solution can be defined by the view of this 

function after that, when it is constructed, that is after that when the solution of the boundary 

value problem is found. But before the problem is solved, this function is unknown. So in 

practice of FCR method application the prediction of singular point locations of the original 

problem solution is performed intuitively.  

2. Usually there is a great number of variants and location of FCR, providing the 

fulfillment of extendability condition. For instance, in fig. 7 there is another variant of FCR 

choice for the solution of  problem 3 – initial domain D  is immerged into the intersection of 

three fictitious canonic regions 321 VVVV  : two fictitious circular hollows in 

infinite space 1V  and 2V , for which the general solution of Laplace equation has the 

following form: 
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and a circle 3V  for which the general solution of Laplace equation has the following form: 
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What variant of FCR choice and location (fig. 6 or fig. 7) is the best - is an unsolved 

problem. 



 

a                                                           b 

Figure 7. The domain D  (a) is immerged into the intersection of two 

fictitious circular hollows 1V and 2V , and circle 3V   (b) 

 

4. Gradient method of optimizing the location of the fictitious canonic regions 

S.L. Gladkiy attempted in his work [8] to create an algorithm for solving the problem of FCR 

location in means of an optimization problem. The essence of the algorithm is as follows. 

Let the boundary value problem be solved for the domain D . Somehow (for example, on 

the basis of intuitive considerations of mathematician, who is solving the boundary problem), 

let fictitious regions and their initial location be selected. It’s necessary to change the 

positions of the fictitious canonic regions in order to ensure the best quality solution. 

The square error of the boundary conditions is taken as the quality criteria of the 

optimization problem:  

     dSBB
S

2
***ε   xx                                                (23) 

Let the initial location of a FCR be defined by the position of its center 0C  (fig. 8). All the 

points at the distance of dL  are taken into consideration. The value of dL  is an input 

parameter of the algorithm and is set by users in fractions of the characteristic size L  of the 

domain D . Further, with the help of the golden section method the direction of movement 

(angle) of the FCR center is determined, providing the decrease in value of the selected 

quality criteria. The center of FCR is placed in the point 1C  and the new value of quality 

criteria is calculated. If it is smaller than in the previous position, the center of FCR remains 

at the point 1C , and further some similar actions are performed. If the value of the quality 

criteria increases, then the value of dL  will decrease. The degree of decrease in the 

parameter dL  is also considered to be as an input parameter of the algorithm. After several 

iterations for one FCR, it moves to the point nC . Further we consider other FCR for which 

similar iterative algorithm is implemented, and the initial value of dL  is restored every time. 



The process of the sequential movement of the FCR centers is done as long as the value of 

the quality criteria will decrease by the predefined times or the total number of iterations will 

not exceed the maximum allowable value. 

 

Figure 8. Scheme of sequential FCR movements. 

 

According to computational experiments, the use of the optimization algorithm in 

some cases allows to find good solutions of boundary value problems. However, this 

algorithm has significant drawbacks: 

1. The result of applying the algorithm depends on the initial approximation: the 

selected by a mathematician type of fictitious canonic regions (circle, ring, hollow, layer, 

etc.), their count and the number of summands N , retained in the general solutions (14), 

relating to fictitious canonic regions. 

2. Functional (23) has not one, but a lot of extremes, and therefore the application of 

the described optimization algorithm, which is originally gradient, allows, as a rule, to find  

not global, but some of the many local extreme points. 

In this regard, we have attempted to create a genetic algorithm for solving this optimization 

problem, which is deprived of these shortcomings. 

 

5. Genetic algorithm for fictitious canonic regions selection and positioning 

Genetic algorithms are one of the newest sections of the artificial intelligence [9]. They 

originate from the evolutionary theory of Darwin, and they are based on the use of the 

mechanisms of natural selection and genetic inheritance to solve optimization problems. 

Optimization problem is formulated in such a way that its solution could be represented as a 

vector (chromosome), whose components are the parameters ("genes") that characterize this 



decision. Randomly it generates a certain amount of initial vectors (initial population). They 

are evaluated using criteria of solution quality (fitness function), resulting in each vector is 

assigned a specific value, which determines the probability of survival of the organism 

represented by this chromosome vector. Then, using these values of fitness function, "natural 

selection" is done - "individuals" who have sufficiently high value of fitness function have a 

chance to survive. Then some genetic operations are produced on "surviving" individuals - 

"cross" and "mutation", resulting in a "new generation". Specimens of the new generation are 

also evaluated using the fitness function, then the selection is made again, some genetic 

operations are applied etc. This is a model of an "evolutionary process", which runs for 

several life cycles: each generation replaces the previous one up to that point when the 

criterion of algorithmic stop is fulfilled. The criteria might be: global or local minimum 

found; the number of generations for evolution exceeded; the computational time expired. 

We can distinguish the following stages of the genetic algorithm: 

• Creation of the initial population. 

• Determination of fitness function for individuals in a population. 

• Start the cycle of evolution: 

- Selecting individuals from the current population (selection). 

- Crossover and mutation. 

- Calculation of fitness function for all individuals. 

- Formation of a new generation. 

• The end of the evolution cycle. 

In drawing up the genetic algorithm of FCR positions optimization we will consider the 

functional (23) as a function of fitness because it is an integral characteristic of the solution 

error.  

Let us introduce the notion of individual and present it in the form of the following structure: 

Table 1. Representation of individual’s structure 

Field  

name 
K 

FC

R 

type 

x y N … 
FCR 

type 
x y N 

Data  

type 

 

Int 

 

Int Real Real Int … Int Real Real Int 

 

Where: 

K is the number of FCR, encoded by the number of type Integer. 

FCR type is one of the possible FCR kinds (circle {0}, ring {1}, hollow {3}, infinite slab 

{4} etc.), encoded by the number of type Integer. 

X is the coordinate of FCR centre on horizontal axis, has the data type Real. 

Y is the coordinate of FCR centre on vertical axis, has the data type Real. 

N is the number of summands that are held in the general solution (14), encoded by the 

number of type Integer. 



Thus, the notion of individual in this case means one of the variants of FCR, which 

chromosome genes are as follows: number of FCR, their type, coordinates that determine the 

FCR spatial position, and also the number of summands held in general solutions related to 

FCR. The aim of genetic algorithm is to find an individual for which the fitness function 

(functional) has the least value – a global minimum. 

Two types of genetic algorithm were tested. They are called continuous and discrete 

variants. In a continuous variant the FCR centre point falls in any point of computational 

domain of a boundary value problem. Thus, the global minimum will be found on an infinite 

set of FCR positions, constrained only by a possibility of presenting the real number in a 

computer. In a discrete variant before the algorithm starts, a grid is formed in a computational 

domain. Then every FCR in every individual must have its center in the grid node.  So, the 

global minimum will be found already on the finite set of FCR positions. 

Admittedly incorrect individuals must not be used in a genetic algorithm; these are 

organisms that contradict the physical sense of the problem. An FCR of the type “hollow”, 

which centre point is inside the computational domain, may serve as an example, though it is 

evident that the centre point of an FCR of the type “hollow” must be outside the 

computational domain of a boundary value problem. The test of an individual correctness is 

realized in the genetic algorithm. 

The first population of individual organisms is generated in a random manner. The number 

of individuals in a population is determined according to the input parameters of genetic 

algorithm. The number of FCR, their type and coordinates and also the number of summands 

for every FCR are also generated as random values. 

According to the chosen type of algorithm (continuous or discrete) the centre points of 

every FCR are chosen in the problem solution domain. If the continuous variant is chosen, 

then FCR centre points fall in any point of computational domain and uniform distribution is 

used for coordinates x and y. If the discrete variant is used, then the FCR centre points fall in 

the grid nodes and the probabilities of falling in all nodes are the same. 

After generation every individual takes a test on correctness. If the organism is incorrect 

for the problem, then the regeneration of an individual organism is performed. 

After the computation of fitness function value by formula (23) every individual from the 

population undergoes sorting by the value.  An individual with the best fitness function value 

takes the first leading position; it is not subjected to mutation and necessarily passes selection 

in the next generation in order to get better (or the same) value for the leading individual at 

the next algorithm iteration. 

Two variants of selection of individuals for crossover are implemented. 

In the first variant every individual is crossed with one of the remaining individuals, 

chosen in a random manner. So, in this variant every individual takes place in the crossover 

at least once. 

The second variant is called “roulette” algorithm. A probability value for crossing is 

formed for every individual. The better the fitness function value is the more is the 

probability value for crossover. 

According to probability values M random pairs are formed. They produces M 

descendents. In the general case individuals-descendents in the “roulette” algorithm have a 

smaller fitness function value than in the first variant of selection of individuals for 

crossover. 



After fulfilling the crossover process a test of a generated individual on correctness takes 

place. If an individual is incorrect for the given problem, the crossover process is performed 

again. 

Five variants of crossover operator are implemented. 

Simple method. The integer number K is chosen in the interval from 1 to M, where M is the 

number of FCR in an individual. Then the first K fictitious regions from the first individual 

are chosen to be individuals-descendents, the rest FCRs are selected from the second 

individual. 

Flat method. FCRs taking correlative positions in individuals are crossed. The centre point 

of a new FCR is chosen in a random manner from the interval that is made by FCR-parent 

centre points. The type of a new FCR is chosen in a random manner from the types that FCR-

parents have.  

Mixed method. FCRs taking correlative positions in individuals are crossed. The centre 

point of a new FCR is chosen in a random manner from the interval that is made by FCR-

parent centre points. This interval is increased by means of a coefficient that is the parameter 

of crossover method. The type of a new FCR is chosen in a random manner from the type 

that FCR-parents possessed.  

Discrete method. The integer number K is chosen in a random manner from the interval 

from 1 to M, where M is the number of FCRs in an individual. Then K FCRs from the first 

individual in the random manner is included into the individual-descendent, the rest FCRs are 

chosen from the second individual. 

Fuzzy method. FCRs taking correlative positions in individuals are crossed.  The 

probability of FCR-descendent centre point to fall closer to the FCR-parent centre point is 

increased. 

After fulfilling the crossover stage the mutation stage takes place. Every individual may 

mutate with a certain degree of probability that is the input parameter of a genetic algorithm. 

During mutation only one gene can be changed in an individual. FCR that will be subjected 

to mutation is selected in a random manner. The type of selected FCR may be changed only 

to one of the remaining types, or one of centre point coordinates may be changed. The change 

of a coordinate takes place near the initial coordinate.  

After fulfilling the mutation stage the test of a generated individual on correctness takes 

place. If an individual is incorrect for the given problem, the mutation process is fulfilled 

again. 

Then a selection phase comes. This phase provides a test that indicates the existence of 

replicated individuals. If such replicated individual exists, it will be replaced by a new 

random individual. When there is no replicated individual remained in the population, values 

of fitness function will be calculated for each individual left. Individuals in the population are 

sorted according to their values of fitness function and in the next generation we may see a 

half of these individuals that have better values of fitness function. 

 

6. Genetic and gradient methods in comparison 

Problem 1. Find the temperature distribution in the biconnected domain (figure 9), where the 

temperature on the outer circuit is 100ОC and on the internal – 3320ОC 



 

Figure 9. Biconnected domain, presenting a cross section of a solid-fuel rocket engine. 

Optimization with the gradient method. To solve a boundary value problem, using FCR 

and the gradient method, it is necessary to set the initial number, the type and the position of 

fictitious canonic regions and the number of held summands in general solutions for the 

chosen FCRs. An experience of such problems solution shows that it is rational to use only 1 

FCR of “a ring” type, for which a general solution of Laplace equation has the form (16) and 

8 FCRs of a circular hollow in infinite space type, for which it has the form (20) or (21). 

Initially all FCRs were placed in the origin of the coordinate system. 

To solve an optimization problem with the gradient method, the maximum number of 

algorithm iterations was set to 1000. As a result of first 20 iterations, the error ,20%0ε   

was achieved, and then its value didn’t reduce during all iterative process. 

Figure 10 presents an optimal position of FCRs, obtained with the gradient method. 

 

Figure 10. A scheme of the optimal positions of FCRs, obtained with the gradient method. 

 

Optimization with the genetic algorithm. To solve this problem a genetic algorithm with 

the following input parameters was launched: 



 The number of individuals in a population – 100; 

 Initial number of FCRs in an individual – 9; 

 Initial number of held summands – 20; 

 The probability of a mutation – 5%; 

 The maximum number of generations – 100. 

After the replacement of 10 generations an error of  the boundary value problem reduced 

to ,20%0ε  , the value, achieved by gradient method. Then the genetic method continued 

its work and as a result of 100 generation replacement the error %007,0ε   was achieved 

and this error is 28 times less than the error of the gradient method. 

 

 

Figure 11. A scheme of the optimal positions of FCRs, obtained with the genetic algorithm. 

 
Boundary value solution in a form of temperature isolines, obtained with the FCR method 

and the gradient algorithm, is given in the figure 12. 

 

 

Figure 12. A solution of the boundary value problem 1 – temperature isolines in a cross 

section of a solid-fuel rocket engine. 



 

Problem 2. Find a solution of a boundary value problem of the theory of elasticity in the 

biconnected domain, depicted in the figure 9. The rigid constraint is set on the outer 

boundary and on the internal boundary a uniform pressure distribution is set - 152 MPa (1500 

atm). 

As well as in the preceding case, in the solution of this problem gradient and genetic 

algorithms of functional minimization of boundary conditions were used. General solution of 

the theory of elasticity equations in the cylindrical coordinate system  zr ,,  were used 

(plane-strain deformed state is supposed) [8] 
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Three types of FCRs can be distinguished from this solution: “a ring” type includes all 

basis functions, “a circle” type – only nonsingular functions, and “circular hollow in the 

infinite space” type – only singular basis.  

The gradient method allowed us to obtain an exact analytical solution of the boundary 

value problem which differs from the original boundary conditions by the value %75,1ε  , 

and the genetic algorithm allowed to reduce the error to the value %67,0ε  . The final 

solution of the boundary value problem in the form of von Mises stress intensity distribution 

is presented in fig. 13. Here the dangerous stress concentration is seen (red isolines at the 

inner surface of the computational domain), which could have been one of the possible 

reasons of the crash of the American spaceship «Challenger» in 1986. 

 



 

Figure 13. The solution of boundary value problem 2 – von Mises stress intensity distribution 

in cross section of the solid-fuel rocket engine. 

 
Problem 3. It is necessary to obtain the solution of a boundary value problem of the steady 

heat conduction in a three-dimensional cylindrical solid with a hole in the side surface which 

is shown at fig. 14. At the solid’s surface the conditions of the third type are set: the 

temperature of the environment at the outer and side surfaces equals 0, at the inner surface 

and at the surface of hole it equals 1.  The coefficient of heat emission at the whole surface 

equals 1 (all values are given in dimensionless form). 

 

Figure 14. Cylindrical solid with a hole in the side surface. 

  

For application of the FCR method to the solution of three-dimensional steady problems of 

heat conduction we need general solutions of Laplace equation for various spatial canonic 

regions – sphere, cylinder etc. Let us use general solutions given in [6], obtained by Fourier 

method of separation of variables. According to [6] the general solution of Laplace equation 

in spherical coordinate system   θ,,r  can be presented in the following way: 
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where nP  – Legendre polynomials, 
m

nP  – associated Legendre functions. 

The given solution is the general solution for a hollow sphere, i.e. by the choice of 

coefficients of the given solution it is possible to satisfy rather arbitrary boundary conditions 

at the surface of a hollow sphere with any outer and inner radius. If we leave in the given 

solution only nonsingular basis functions, we will obtain the general solution for a solid ball, 

if we leave only singular – the general solution for a spherical hollow in the infinite space. 

Further, according to [6] the general solution of Laplace equation in cylindrical coordinate 

system  zr ,,  can be presented in the following way: 
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where 
L

n
  , L – the period of temperature distribution by axis z ,  

mmmm YJKI ,,,  

– Bessel functions. 

The given solution is the general solution for a hollow cylinder. If we leave in the given 

solution only nonsingular basis values we will obtain the general solution for a solid cylinder, 

if we leave only singular values – the solution for a cylindrical hole in the infinite space. The 

solutions containing trigonometric functions of coordinate z  correspond to the solution for a 

long cylinder, hyperbolic functions – to the solution for a short cylinder. 

According to the FCR method, the given cylindrical solid should be immerged into the 

intersection of some FCRs, in the given example it was immerged into «hollow spheres» and 

«spherical hollows in the infinite space», for which general solutions of Laplace equation 

were determined in (25). In the result of genetic algorithm’s work the optimal location of 

FCRs was found: the given solid appeared to be immerged into intersection region of one 

«hollow sphere» 1V  and four «spherical hollows in the infinite space» 2V , 3V , 4V , 5V , as it 

is shown at fig. 15.  

 

 

Figure 15. Scheme of the solid immersion into the intersection of FCRs - “hollow sphere” 1V  

and  “spherical hollows in the infinite space” 5432 ,,, VVVV  (cross section in the middle of  

the hollow). 

 

The results of the problem solution are presented in figure 16 and figure 17. Maximum 

error of boundary conditions by heat flow is less than 1%.  



It is worth mentioning that in engineering analyses such an error may be considered as a 

consequence of real boundary conditions’ idealization since all the boundary conditions are 

assigned with some permissible accuracy. That is, this solution is exact for some adjusted 

boundary conditions which differ insignificantly (less than 1%) from the initial ones.  

 

 

Figure 16. Temperature distribution. 

 

 

Figure 17. Heat flow distribution. 

 

7. Conclusions 

Analytical methods of boundary value problems solution (which lead to solutions in the form 

of analytical expressions, satisfying differential equations and boundary conditions) are more 

reliable than numerical methods (which lead to solutions in the form of arrays of numbers). 

On the other hand, analytical methods are more complicated in implementation than 



numerical ones. According to this article, an effective tool for analytical methods 

implementation is artificial intelligence methods, particularly genetic algorithm technology. 
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