
1

A framework for creating ‘real engineering’ calculators

Sergey L. Gladkiy

Introduction

Many engineering applications require a mechanism for formulae input. There are a lot of libraries, source code or

not, which implement such possibility. They are all build with different technologies and have different features

implemented. The libraries are frequently called ‘math parser’, ‘expression parser’, ‘calculator’ and so on. They

commonly allow calculate formula, containing real numbers, real variables, functions of real arguments, algebraic

operators. Sometimes logical operations and complex numbers allowed. These libraries are intended to create

‘simple engineering’ calculators which will evaluate complicated formula at one button click.

But real engineering applications require much more advanced features, like evaluating formula for complicated

internal types (numerical modeling results, signal processing). This article is an introduction to the symbolic

framework ANALYTICS (http://sergey-l-gladkiy.narod.ru/index/analytics/0-13) which allows easily creating ‘real

engineering’ calculators for advanced mathematical and physical applications.

Background

Working as a programmer for creating different engineering applications, one common task appeared: create a

calculator for processing internal data. This task arises for almost all serious engineering programs. Consider, for an

example, the finite element modeling programs, like ANSYS, NASTRAN, Elmer. They all have a mechanisms of

formula parsing for processing input data or result postprocessing. The need of result postprocessing arises from the

fact that many users require nonstandard processing formula, which cannot be built into the application. Another

example is the signal processing software, like borehole analysis programs: WellCAD, Sonata. These programs

operate with complicated signal data (1D, 2D and even 3D) and contain mechanism for data processing with user

defined formulae – so called ‘calculators’.

All the calculators in the engineering applications work with the same principle: the user input a formula, containing

references to the internal application data (borehole data, finite element results) and gets the result, which is, in

common case, also the data of an internal type. The difference between the calculators is in the data types they

operate on. Most of the mentioned ‘parsers’ and ‘calculators’, which can be found in the Internet, are not able to

deal with the arbitrary data (internal application data), because they intended to process only ‘built-in’ types

(commonly – real numbers).

Thus, for creating ‘real engineering’ calculators for advanced physical modeling and data processing applications, a

symbolic framework required, which supports processing data of arbitrary, application specific types. The framework

must satisfy (at least) the following requirements:

 - Parsing complicated formula, abstracting from the data types.

 - Evaluating complicated formula for arbitrary data types (including data compatibility control).

 - Allowing external extensions (without modifying core framework algorithms).

 - Minimal code writing for integrating in the target engineering application.

To satisfy these requirements, the symbolic framework should have strongly structured, abstract class hierarchy,

which is close to math concepts, such as function, operator and others.

ANALYTICS framework

http://sergey-l-gladkiy.narod.ru/index/analytics/0-13

2

The ANALYTICS library is a symbolic framework, totally written in C# (even Java and Delphi versions available). The

main purpose of the framework is allow programmers easily creating ‘engineering calculators’ for their math, physics

and engineering applications, without inventing own parser for each application. The library also includes many

ready-to-use extensions for working with frequently used data: real and complex numbers, common fractions, real

and complex arrays and matrices, units of measurement and physical values.

For satisfying the requirements, stated above, the ANALYTICS framework core contains specially designed classes for

modeling various math concepts. The total class hierarchy is rather complicated and is out of the article’s scope. Let

us consider, as examples, just some of the base classes (more information can be found in the developer guide

http://sergey-l-gladkiy.narod.ru/ana_docs/ANALYTICS_C_manual.en.pdf).

One of the base concepts is math expression – is a sequence of elements for which its result value can be calculated.

Generally, expression contains such elements as constants (literals), variables, operators, functions. The ANALYTICS

library uses the concept of the expression for presenting parsed data inside the core algorithms. It allows excluding

dependency of the data types and working with pure abstract data. The expression class hierarchy is the following:

All expressions divided into two categories: simple expression – does not contain other expressions (as constant or

variable); structured expression – contains other expressions as internal elements (for an example, function

expression contains expressions for arguments). Indexing expression represents indexed data, like array ‘A[i]’ or

matrix ‘M[i][j]’. Unary operator expression is for prefix or postfix operators, like minus ‘-x’ and factorial ‘n!’. Binary

expression represents a sequence of operations, like additions ‘x-y+1’ or multiplication ‘2*x/y’. Function expression

http://sergey-l-gladkiy.narod.ru/ana_docs/ANALYTICS_C_manual.en.pdf

3

is for functions, like sin(x). Thus, this class hierarchy allows to work with math expression concept inside the core

algorithms (check the expression syntax, simplify the expression, find the derivative) in abstract manner, without

referencing concrete types.

For the stage of evaluation (calculate the value of an expression), in opposite, we need to select the evaluation

algorithm for every expression, which is dependent on the types of data. For this purpose, the abstractions for

calculation of every expression introduced. As an example of the abstraction, there is the operator class hierarchy

diagram (not total).

As can be seen from the diagram, every operator is an abstract class. It allows overriding operations (evaluation

algorithms) for any data types by introducing a descendant of one of the abstract classes. The ANALYTICS core

system then automatically finds these classes and uses them to evaluate expressions with according data type

values. Such scheme also allows automatically check the compatibility of the operations, because the operator

classes provide the information about operand types and the result, so, following the evaluation algorithm we can

ensure that all the operations get data of permissible types.

Thus, the ANALYTICS framework realizes:

 - Symbolic expression parsing algorithm, not depending on data types.

 - Symbolic expression manipulation algorithms, not depending on data types.

 - Universal expression evaluation algorithm, not depending on data types.

4

 - Universal mechanism to override operations for specific data types with automatic control of the data

 compatibility.

These features allow developers using the framework to build ‘engineering calculators’ for various math and physics

applications.

Engineering calculator example

Now, let us consider an example of the ‘engineering calculator’ realization, using the ANALYTICS framework. As the

internal data for our calculator we select the Quaternion (https://en.wikipedia.org/wiki/Quaternion). This is really

complicated math object and all its features are out of the article’s scope. We will just use the ready-to-use

simplified implementation of the concept – Quaternion class from the .NET System.Windows.Media.Media3D

namespace.

As was mentioned above, all symbolic core algorithms in the ANALYTICS framework are not dependent on the data

types. So, for realizing the calculator for the specific data type, only evaluation operations must be provided. First, let

us introduce the operation for multiplying a quaternion with a real number. For this we just must realize the

descendant of the multiply operator. The code for the class is the following:

public sealed class RealQuaternionMultiply : GenericMultiplyOperator<double, Quaternion, Quaternion>
{
 protected override Quaternion TypedOperation(double operand1, Quaternion operand2)
 {
 return new Quaternion(operand2.X*operand1, operand2.Y*operand1, operand2.Z*operand1,
operand2.W*operand1);
 }
}

The class is inherited from generic multiply operator, so it overrides the multiply operation, like ‘x*Q’. The generic

parameters of the class specify the types of operands (two operand, because multiply operator is a binary one) and

the result type. The only method to override for the class is ‘TypedOperation’ which realized the multiplication

algorithm for a Quaternion and a real number. That is all for the operation realization: the class will be automatically

found by the ANALYTICS core and used when required (it is supposed that the class implementation is in some

separate assembly, not ANALYTICS core, and the assembly loaded into the application domain).

Analogously, other operations for the Quaternion objects can be introduced. For an example, the conjugate

operation can be introduced as the tilde operator ‘~’ (unary prefix). The code is the following:

public sealed class QuaternionTilde : GenericTildeOperator<Quaternion, Quaternion>
{
 protected override Quaternion TypedOperation(Quaternion operand)
 {
 Quaternion result = new Quaternion(operand.X, operand.Y, operand.Z, operand.W);
 result.Conjugate();
 return result;
 }
}

As the conjugate operator is unary, only one operand type specified in addition to the result type.

Another fine feature of the ANALYTICS framework is that sometimes it can automatically implement operations for

the program’s specific types – without any additional code! Frequently, there already exists the operator

overloading for the program’s specific types – for an example, the Quaternion type has operator overloadings for

https://en.wikipedia.org/wiki/Quaternion

5

addition and multiplication. So, the ANALYTICS core will automatically detect this overloadings and use them when

required. It means, that such operations as Quaternion+Quaternion or Quaternion*Quaternion need no code

writing at all.

Analogously we can introduce various functions for Quaternion arguments, like ‘sin(Q) ‘, ‘log(Q)’ and so on. Detailed

information about function introducing can be found in the manual http://sergey-l-

gladkiy.narod.ru/ana_docs/ANALYTICS_C_manual.en.pdf .

Now it is time for testing our ‘quaternion calculator’. We realized basic algebraic operations and the conjugate for

the quaternions and then it is possible to calculate various formula, containing quaternions. For introducing the

quaternion data in the evaluation process the common way is to add variables for the data. The code for this is the

following:

_translator = new Translator();
Variable v1 = new ObjectVariable("Q1", new Quaternion(1, -1, 0, 2), typeof(Quaternion));
_translator.Add(v1);
Variable v2 = new ObjectVariable("Q2", new Quaternion(-1, 2, 1, 0), typeof(Quaternion));
_translator.Add(v2);
Console.WriteLine(v1.ToString());
Console.WriteLine(v2.ToString());

First, we created the Translator instance – it is the main class for manipulating symbolic expressions in the

ANALYTICS framework. Then we created the variable ‘v1’ with name ‘Q1’ and value Quaternion (1 -1 0 2). The

ObjectVariable class is intended for holding data of any type – Quaternion in this case. We added the variable to the

translator instance. The same was made for another variable ‘Q2’. The console output is:

Q1 (Quaternion) = 1;-1;0;2
Q2 (Quaternion) = -1;2;1;0

Now we are able to evaluate expressions containing variables ‘Q1’ and ‘Q2’. For an example:

string f = "~Q1-2*Q2";
Object r = _translator.Calculate(f);
Console.WriteLine(f+" = "+r.ToString());

which gives the following console output:

~Q1-2*Q2 = 1;-3;-2;2

It should be noted, that only operations for ‘~’ and ‘*’ operators were introduced in the system explicitly (creating

special classes). The operation for the ‘-’ operator was automatically recognized by the ANALYTICS core from the

overloaded subtract operator of the Quaternion structure.

But, trying to evaluate the following formula:

string f = "Q1+Q2!";
Object r = _translator.Calculate(f);
Console.WriteLine(f + " = " + r.ToString());

the exception occurred

http://sergey-l-gladkiy.narod.ru/ana_docs/ANALYTICS_C_manual.en.pdf
http://sergey-l-gladkiy.narod.ru/ana_docs/ANALYTICS_C_manual.en.pdf

6

Unary operator '!' not found for operand type 'Quaternion'.

This is because we have not defined the factorial ‘!’ operator for the Quaternion type and no overloaded operator

was found for the structure. So, the system automatically controls the type compatibility for any operation in the

formula.

Conclusions

In the article some base features of the ANALYTICS library described. The framework allows easily creating

‘engineering’ calculators for different advanced modeling applications. The framework has specially designed class

hierarchy for integrating it into any program with minimal code and without modifying the core algorithms. The

flexibility of the framework confirmed by the fact, that it was successfully integrated into many numerical libraries,

such as NMath (http://sergey-l-gladkiy.narod.ru/index/nmath-analytics/0-21), ILNumerics (http://sergey-l-

gladkiy.narod.ru/index/il_analytics/0-18), Extreme Optimization (http://sergey-l-gladkiy.narod.ru/index/extreme-

analytics/0-22).

Many other unique features of the framework are out of the article’s scope. They can be tested on the example

applications available: an example of engineering calculator for FEM results postprocessing http://sergey-l-

gladkiy.narod.ru/ana_download/FEMPOSTPRO.DEMO.1.0.Setup.rar; ready-to-use borehole data processing system

http://sergey-l-gladkiy.narod.ru/index/wld_cad/0-17 realized as the engineering calculator with the ANALYTICS

framework.

http://sergey-l-gladkiy.narod.ru/index/nmath-analytics/0-21
http://sergey-l-gladkiy.narod.ru/index/il_analytics/0-18
http://sergey-l-gladkiy.narod.ru/index/il_analytics/0-18
http://sergey-l-gladkiy.narod.ru/index/extreme-analytics/0-22
http://sergey-l-gladkiy.narod.ru/index/extreme-analytics/0-22
http://sergey-l-gladkiy.narod.ru/ana_download/FEMPOSTPRO.DEMO.1.0.Setup.rar
http://sergey-l-gladkiy.narod.ru/ana_download/FEMPOSTPRO.DEMO.1.0.Setup.rar
http://sergey-l-gladkiy.narod.ru/index/wld_cad/0-17

