
N-Storage Developer manual

Copyright © Sergey L. Gladkiy

1

1

N-Storage

Developer manual

Copyright © Sergey L. Gladkiy

Email: lrndlrnd@mail.ru

URL: www.Sergey-L-Gladkiy.narod.ru

mailto:lrndlrnd@mail.ru
http://www.sergey-l-gladkiy.narod.ru/

N-Storage Developer manual

Copyright © Sergey L. Gladkiy

2

2

Contents
Introduction .. 3
1. File format .. 4
File format ... 4
File structure .. 4
FORMAT and INFORMATION blocks ... 4
TYPES block ... 4
OBJECTS block ... 4

2. N-Storage realization .. 5
3. Using N-Storage .. 6
Saving and reading data ... 6
Serializing special data .. 7

Appendix A. NODF data examples .. 8
Block FORMAT .. 8
Block INFORMATION ... 8
Block TYPES ... 8
Type descriptions TYPENAME .. 8
Simple .. 8
Arrays .. 8
Generics .. 8

Data values ... 8
Values (VALUE) .. 8
References (REF) .. 9
Lists (LIST) .. 9
Reference lists (REFLIST) ... 9
Binary (BINARY) ... 9

Member records .. 9
Object records ... 10

N-Storage Developer manual

Copyright © Sergey L. Gladkiy

3

3

 Introduction
N-Storage library provides saving and reading (serialization and deserialization) of

object data for .NET programs. Data saved in Text format as object structures those are easily

readable for humans. The library developed for using with minimal efforts for code writing and

with maximum serialization possibilities. The storage algorithms provide automatically supported

version compatibility (forward and backward) when data structure changed (data removed or added).

The system provides error diagnostics with pointing error data elements and reasons of the

errors.

ADVANTAGES of N-Storage library:

1. 100% C# source code.

2. Simple text file format, human readability.

3. Simple in use with minimal code writing.

4. Automatically supports the most .NET types (including generic types).

5. Forward and backward version compatibility for object data changes.

6. Error diagnostics when sawing and reading data.

7. Reading data with noncritical errors.

8. Any type automatically serialized (without Serializable attribute).

9. No problem with Events.

10. No problem with mutually dependent objects.
11. Streams and memory-mapped files serialization.

Serialization concepts

Serialization is a process of storing objects’ state (program data) with converting them

into a data stream with the possibility of total reconstruction of initial state

(deserialization).

Main concepts of data serialization, used in N-Storage system, aim to such realization of

storage system that provides the simple use and automatically supported forward and backward

version compatibility with data changes.

- Serialization must store ALL data as is. As serialization must store the total state of

the object, all object’s data must be stored for guaranteed object reconstruction. Data must not

be marked with Serializable attribute to be stored.

- Deserialization must reconstruct data but not execute methods. Together with data

objects also contains ‘properties’. Properties are not data, they are interfaces for accessing

data. The access interface can hide complicated logic execution under the setting data values. In

many cases this execution cannot be done before the total state of the object reconstructed. So,

serialization MUST NOT be based on properties, it must be based on data fields only.

- Objects may be reconstructed partially. During deserialization process all data that can

be reconstructed must be reconstructed. Corruption of some part of data must not lead the

reconstruction of another part being impossible (if file format is not corrupted).

- Automatically support of forward and backward version compatibility. With internal

program data representation changing the forward and backward compatibility of stored data must

be AUTOMATICALLY implemented in storage system if it is can be done without special knowledge.

For an example, if in new program version some data added it have not being marked with special

attribute. The storage system has enough information to handle this satiation. If newer program

reads data stored with older version, the absence of some part of data must not cause error

generation. Similarly, when older program reads data written with newer version, the presence of

superfluous data mast not cause problems – this data just not needed for the program. Developer

must not mark every new field with special attribute or write special code – storage system is

responsible for this.

N-Storage Developer manual

Copyright © Sergey L. Gladkiy

4

4

1. File format
NET Object Data Format (NODF) is intended for storing data conforming to the NET

Framework types, including fundamental types, arrays, generics, enumerations, structures and

classes.

File format

NODF file is a text file containing strings in Unicode character encoding. Culture

dependent data string representation (floating numbers, dates) is formatted as Invariant Culture.

File structure

The NODF file divided into separate blocks. Each block has the following format

[BLOCK:block_name]

 Block Data

[BLOCKEND:block_name]

BLOCK, BLOCKEND – keywords, block_name – name of the block, Block data – data, specific for the

block.

NODF file contains the following three obligatory blocks:

1. FORMAT – information about format and data version;

2. INFORMATION – information about contained data (number of objects, types and so on);

3. OBJECTS – stored object data.

In addition there can be nonobligatory TYPES block following after INFORMATION one and containing

the dictionary of data types.

FORMAT and INFORMATION blocks

FORMAT and INFORMATION blocks contains data written in simples format – sequence of the

following records

NAME=VALUE

where NAME is the stored property name and VALUE is its string value representation (conforming

Invariant Culture). In these blocks only one line strings allowed for each property (multiline

records not allowed). The number of properties can differ for various versions. Only ‘public’

properties stored in these blocks, storage implemented with simple serialization algorithm.

TYPES block

The TYPES block contains records of the following format:

TYPE~ID64=TYPENAME

where TYPE – keyword;

ID64 – 64-bit unsigned integer number (number of type which is the unique identifier);

TYPENAME – type description.

Type description (TYPENAME) has the following syntax:

Name<Parameter1:Parameter2:…:ParameterN>

Name – type name;

ParameterX – type parameters depending on its specific properties (present not for all types).

For generic types all parameters are also type descriptions and their format is the same as

TYPENAME.

For array names the following scheme used: array type name consists of the name of base type

(type of array elements) followed by brackets ‘[]’. Regular and irregular arrays supported.

Brackets format is the same as for C# arrays declaration (see appendix).

OBJECTS block

Objective data block contains the sequence of object records. Each object record is data

for one object and has the following format:

OBJECT~ID64:TYPE

{

 Object data

}

OBJECT – keyword;

ID64 – 64-bit unsigned integer number (number of object which is the unique identifier);

N-Storage Developer manual

Copyright © Sergey L. Gladkiy

5

5

TYPE – object’s type.

Object Data – object data.

Object’s type can be represented with two ways. If the is TYPES block in the file, the object’s

type is the reference to one of the dictionary entities. And then its format is:

TYPE~ID64

where TYPE – keyword;

ID64 – 64-bit unsigned integer – type’s identifier (key) in the dictionary.

If there is not TYPES block in the file, then object’s type is the full type description

TYPENAME.

Object data is a sequence of the member records (excluding objects of string and value types (see

later). Each member record has the following format:

MEMBERID Name:TYPE

/

Member Value

\

MEMBERID – identifier of object’s element data and can be one of two: DATA (data element),

PROPERTY (property element);

Name – name of the element;

TYPE – type of the element (the same as for object record);

Member value – value of the member.

Member value has the following syntax:

FORMATID<PARAMETERS>=value

FORMATID – identifier of the member format;

PARAMETERS – data parameters, not obligatory and depend on the member format;

value – the member value (can be multiline).

The syntax of data parameters: PARAMETERS are the sequence of values separated with ‘:’,

number and sense of values depend on data format. For binary data (streams) they are 2 64-bit

integers – size of stream in bytes and the current stream position. For array data parameters are

its sizes. Regular and irregular arrays supported. For regular arrays the number of parameters

equals its dimension and each value if the size of one dimension. For irregular arrays each

parameter represents the inner dimensions for each element (see appendix).

Format identifier can be one of the following:

- VALUE – data value is string representation of member value of type TYPE (for Invariant

Culture). This format is used for all primitive value types (int, double and so on,

excluding struct types), enumerated types and other.

- REF (reference) – data value is a 64-bit unsigned integer – reference to the object’s

number in the file’s object list, also it can be NULL. This format is used for all

reference types (class), struct types and string values.

- LIST – data value is the list of simple values separated with spaces. Each simple value is

the string representation of one primitive type value (for Invariant Culture). This

format is used for arrays of primitive type values.

- REFLIST – data value if the list of 64-bit unsigned integers separated with spaces

(identifiers of objects in the file’s object list) or NULL values. Used for storing

arrays of reference types.

- BINARY – data value is the stream of bytes. Used for storing streams.

- EXTERNAL – data value is a path for the external file, containing the data for this

member.

Object Data for String values and objects of primitive types (value type excludingе struct) have

the following format:

 VALUE<PARAMETERS>= data value

PARAMETERS – data parameters, not obligatory and depend on the type;

data value – string representation of the value.

For type ‘String’ the only parameter is the length of string, data value begins from the next

line.

For primitive type data value is string representation of value (for Invariant Culture).

2. N-Storage realization
Realization.

1. File format corresponds to the description of NODF.

2. Only DATA members(fields) supported.

3. Value formats realized: VALUE, REF, LIST, REFLIST, BINARY.

N-Storage Developer manual

Copyright © Sergey L. Gladkiy

6

6

4. Supported data types: classes, structures, generics, value types, strings, nullables,

arrays (regular and irregular), interfaces, streamsпотоки, memory-mapped files.

Constraints.

1. Mixed arrays NOT supported (irregular with inner regular).

2. Arrays of streams NOT supported.

3. Streams with ‘read-only’ position NOT supported.

4. Virtual fields NOT supported.

Notes.

1. Auto-properties (properties with implicit getter and setter) force creation of special

fields. These fields stored by property’s name, not by field’s name.

2. String representation of floating point values can lead to the precision lost due to the

forward and backward conversion. So, the initial and reconstructed values can be NOT

equal after deserialization.

3. Using N-Storage

Saving and reading data

The main class for serializing and deserializing data is FileSerializer. This class has

two constructors:

For serialization:

FileSerializer(object data, FormatAttributes fa, FileStoreOptions opt, string fileName)

For deserialization:

FileSerializer(FormatAttributes fa, string fileName)

object data – root object for serialization;

FormatAttributes fa – information about data format and version;

FileStoreOptions opt – options for storing data;

string filename – full file path.

Parameter ‘FileStoreOptions opt’ allows set up some options for data storage process. For an

example, one option turns on or off using the TYPES block while storing data.

Class FormatAttributes contains a set of public properties which stored in FORMAT block. A

descendant of the class can be used and it can contain additional public properties which

automatically stored during serialization.

Serialization.

Serialization is implemented in 2 steps (calling 2 methods):

1. Calling method

bool PrepareSerialization()

This method creates internal data representation structure. It returns true if the

structure created.

2. Calling method

bool Serialize()

This method stores data into the file. Returns true if data stored.

Deserialization.

Deserialization is implemented in 2 steps (calling 2 methods):

1. Calling method

bool PrepareDeserialization()

This method opens the file and reads header data – format and version attributes and

information (number of stored objects, types and so on). Returns true if header data

read successfully.

2. Calling method

bool Deserialize()

This method reads objective data from the file into internal representation structure

and reconstructs original objects. Returns true if even one object read and there is

no critical error (when file structure error fixed).

During deserialization process there can be noncritical errors, when the deserialization

process can be continued. The errors are: superfluous data presented, errors of some objects

creation and so on. After deserialization the information about these errors can be requested

with calling method

List<BaseObjectDataItem> GetErrorInformation()

The method returns list of object those have been read with errors.

N-Storage Developer manual

Copyright © Sergey L. Gladkiy

7

7

Serializing special data

Constrains for the serialization data caused by the current program realization.

For deserialization all stored classes must implement ‘public’ default (parameterless)

constructor. If some class has no such constructor, the instances of the class are not created

and marked as error objects in the data structure.

NOTE: Why ‘public’ constructor required. If some class has no public constructor, this is

probably caused some reasons and the class developer does not intend it to be created with

external objects by common method. It is probably intended for special creation process. Common

example of such objects is ‘singleton’.

If some data field is not needed to be stored, it can be marked with NonSerialized

attribute.

If there is no possibility to provide default public constructor for some class (for an

example, this class is from an external library), then a generating object of Creator class can

be registered for solving this problem. This class has the following constructor

Creator(Type type, Create func)

Type type – type of created instances;

Create func – delegate for providing instantiation of objects.

The generating object must be registered by calling SetCreator method of the Instantiator class.

If some class cannot be serialized itself by some reasons, the storing class can be

registered for solving the problem. Storing class must be a descendant of base class Storer. This

class used in general case of substituting one object data instead of another. For realizing

storing class the descendant of Storer class must be created and 2 abstract methods overridden:

void FromObject(object wrapped)

void ToObject(ref object wrapped)

the former “copies” data from original object to storing one (called before serialization), the

later “copies” data from storing object to original one (after deserialization).

The storing class must implement 2 constructors:

Storer(object stored)

Storer()

for serialization and deserialization accordingly.

 For registering storing class a descendant of StorerReg must be implemented and 2 abstract

methods overridden:

Type GetStoredClass()

Type GetDataClass()

The former must return type of original object class, the later – storing class. The descendant

of StorerReg must be registered with SetStorer method of the TypeRepository class.

N-Storage Developer manual

Copyright © Sergey L. Gladkiy

8

8

Appendix A. NODF data examples

Block FORMAT

[BLOCK:FORMAT]

Format=TEST

Version=1.0

[BLOCKEND:FORMAT]

Block INFORMATION

[BLOCK:INFORMATION]

Root=TestClasses.General

Types=39

Objects=45

[BLOCKEND:INFORMATION]

Block TYPES

[BLOCK:TYPES]

TYPE~0=TestClasses.Structured

TYPE~1=String

TYPE~2=DateTime

TYPE~3=UInt64

TYPE~4=TestClasses.Struct

TYPE~5=Double

TYPE~6=TestClasses.Enumerated

TYPE~7=Object

TYPE~8=TestClasses.Primitive

TYPE~9=Int32

[BLOCKEND:TYPES]

Type descriptions TYPENAME

Simple

Int32

Double

String

DateTime

TestClasses.Enumerated

Arrays

Object[,]

Object[][]

Double[,]

String[][]

Generics

Nullable<Double>

System.Collections.Generic.List<Double>

System.Collections.Generic.Dictionary<String:Object>

Data values

Values (VALUE)

VALUE=1

VALUE=2.2

VALUE=Three

N-Storage Developer manual

Copyright © Sergey L. Gladkiy

9

9

References (REF)

REF=3

REF=NULL

Lists (LIST)

LIST<4:5>=

0.564041984064524 -0.524071000294793 0.917046885898824 0.742994267373809 -0.255815873507325

-0.874795514100602 -0.672671720233127 -0.0310939024347318 0.862441429804285 -0.246964344404156

0.0394569481906746 -0.644531836567694 0.47184890204661 0.581974272421549 0.762016043887481

0.0081122987941431 -0.925377672503413 0.76113086648338 -0.000737712253228606 -0.20026077386004

LIST<5:<3:1:4:NULL:4>:<<3:2:3>:<2>:<1:2:3:4>:<1:2:NULL:NULL>>>=

1.11 1.12 1.13

1.21 1.22

1.31 1.32 1.33

2.11 2.12

3.11

3.21 3.22

3.31 3.32 3.33

3.41 3.42 3.43 3.44

5.11

5.21 5.22

LIST<3:<2:NULL:3>>=

One Two

One Two Last

Reference lists (REFLIST)

REFLIST<3:2>=

12 NULL

NULL 13

14 16

REFLIST<4:<3:1:NULL:4>:<<3:2:3>:<2>:<1:2:NULL:NULL>>>=

17 NULL 18

19 20

NULL NULL NULL

21 22

23

24 25

Binary (BINARY)

BINARY=NULL

BINARY<0:0>=

BINARY<722:123>=

0123456789012345678901234567890123456789012345678901234567890123456789

0123456789012345678901234567890123456789

01234567890123456789012345678901234567890123456789012345678901234567890123456789

01234567890123456789

012345678901234567890123456789

01234567890123456789

0123456789012345678901234567890123456789012345678901234567890123456789

0123456789

Member records

DATA _size:Int32

/

VALUE=3

\

DATA strValue:String

N-Storage Developer manual

Copyright © Sergey L. Gladkiy

10

10

/

REF=4

\

DATA regularDoubles:Double[,]

/

LIST<3:4>=

1.1 1.2 1.3 1.4

2.1 2.2 2.3 2.4

3.1 3.2 3.3 3.4

\

DATA dateData:TYPE~3

/

VALUE=634609728000000000

\

DATA doubleField:TYPE~5

/

VALUE=1.1

\

DATA data:TYPE~11

/

REFLIST<4:5>=

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

\

Object records

OBJECT~14:TestClasses.Simple

{

DATA intValue:Int32

/

VALUE=1

\

DATA strValue:String

/

REF=15

\

DATA doubleValue:Double

/

VALUE=3.3

\

}

OBJECT~15:String

{

VALUE<1>=

2

}

OBJECT~16:DateTime

{

DATA dateData:UInt64

/

VALUE=32

\

}

OBJECT~6:TYPE~8

{

DATA privateInt:TYPE~9

/

VALUE=1

\

DATA privateDouble:TYPE~5

/

VALUE=2.2

\

}

