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 Introduction 
ANALYTICS is a C# library for developers. ANALYTICS library contains special classes to 

work with ‘analytical’ expressions in .NET programs – parse expressions, calculate expression 

values and so on. 

 

ADVANTAGES of ANALYTICS library: 

1. 100% C# code. 

2. Strongly structured class hierarchy. 

3. Universal algorithms (working with formulae of any complexity). 

4. Many predefined functions. 

5. Easy to introduce new functions for any argument types.  

6. Easy to overload operators for any argument types. 

7. Working with Complex numbers. 

8. Working with Common Fractions. 

9. Working with 3D vectors and tensors. 

10. Working with physical values and units of measurement. 
11. Working with indexed data (arrays, matrixes and higher dimensioned data). 
12. Working with special functions. 
13. Analytical derivative calculation. 
14. Ready-to-use numerical tools integrated with symbolic features. 

 

Dependences 
ANALYTICS C# library depends on: 

1. NRTE (NET Run-Time Environment) library. 

2. MATHEMATICS library. 

 

Extensions 
There are the following extensions of ANALYTICS C# library: 

1. ANALYTICS Fractions (depends on MATHEMATICS C# library). 

2. ANALYTICS Linear Algebra (depends on MATHEMATICS C# library). 

3. ANALYTICS Complex (depends on MATHEMATICS C# library). 

4. ANALYTICS Special (depends on MATHEMATICS C# library). 

5. ANALYTICS Mathphysics (depends on MATHEMATICS and PHYSICS C# libraries). 

6. ANALYTICS Numerics (depends on MATHEMATICS library). 

7. ANALYTICS Statistics (depends on MATHEMATICS library). 
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Basic concepts 
The main goal of ANALYTICS library is to provide easiest way to evaluate mathematical 

expressions. This part explains main concepts, used in ANALYTICS library to work with mathematics 

expressions and formulae. 

 Expressions 

 Mathematical expression is a sequence of elements for which its result value can be 

calculated. A simple example of expression is ‘x+y’ – knowing the values of x and y we can 

calculate their sum. Generally, expression contains such elements as constants (literals), 

variables, operators, functions. The result of an expression calculation depends on elements the 

expression consists of. For an example if ‘x’ and ‘y’ are real numbers (variables) – the result 

of the given sum expression is a real number, if one of the values is a complex value – result is 

a complex value too. 

Literals 

 Literal is an unnamed constant value or a symbol staying for ‘standard’ constant value. 

For an example, in the expression ‘2*(x+y)’ – ‘2’ is a numerical literal. Real and Complex 

literals are supported. 

 Real literals can be written in simple and exponential form. Simple form examples: ‘100’, 

‘1.23’, ‘-45.67’1. Exponent form examples: ‘1.23E-3’, ‘-2.45e+5’. 

 For complex literals symbol ‘I’ is used to denote imaginary unit. Complex literal 

consists of Real part and Imaginary part separated by ‘+’ or ‘-’symbols. Real part is just a real 

literal, imaginary part is real literal plus imaginary unit symbol (NOTE: there is no 

multiplication symbol between real literal and imaginary unit symbol). Complex literal examples: 

‘I’, ‘-4I’, ‘2+3.2I’, ‘-2e2-4.45I’, ‘2.45+I’, ‘-1.2e-3+4.5e+2I’. 

 The following ‘standard’ constants are recognized by parser: ‘e’ – Euler number, ‘π’, 

‘Pi’ – Pi number, ‘∞’ – positive infinity. 

Variables 

 Variable is a named value (that can be changed during calculation). A variable name can 

include alpha-numeric symbols, subscript and superscript digits and underscore symbol (the first 

symbol may be letter only)2. The value of a variable can be of any type. The type of a variable 

cannot be changed during calculation. The variable value is accessed via variable name. That is 

in an expression the variable name stands for the current variable value. For an example, let the 

variable ‘A’ is a real variable whose current value is ‘1.0’, then the result of ‘A+1’ expression 

is ‘2.0’. Changing variable values allows calculation of the same expression for various values. 

Operators 

 Syntactically operator is a symbol representing some mathematical operation. For an 

example, operator ‘+’ stands for the sum operation. From the functional point of view, an 

operator implements some action with data values, called operands, and returns the result value. 

 All operators can be divided into many categories. The most common used are unary and 

binary operators. Unary operators have one operand and can be prefix (stands before its operand) 

and postfix (stands after its operand). An example of unary prefix operator is the negation 

operator (‘-x’, ‘-’ is the operator, ‘x’ is the operand). An example of unary postfix operator is 

the factorial operator (‘n!’, ‘!’ is the operator, ‘n’ is the operand). Binary operators have two 

operands and commonly stand between them. An example of binary operator is the addition operator 

(‘x+y’, ‘+’ is the operator, ‘x’ and ‘y’ are the operands). 

 Each operator has such attributes as precedence and associativity. The precedence 

determines the order of expression calculation. The operators with higher precedence applied to 

their operands before the operators with lower precedence. For an example, in the expression 

‘x+y*z’ the first operation performed is the multiplication of ‘y’ and ‘z’ and then the sum of 

                               
1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Current Culture Decimal separator is used in real literals. 
2  WARNING: do not use along imaginary symbol I as variable name, it will always be treated 

as literal value because of literal parsing precedence.  
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‘x’ and the product result is calculated, because the ‘*’ operator is of higher precedence than 

the ‘+’ is. The order of calculation can be changed by using parantheses ‘()’.  The associativity 

determines how operators with the same precedence are grouped in expressions. Let us consider the 

expression ‘2^3^4’ (where the ‘^’ operator stands for the power). The result of the expression 

depends on how the expression is interpreted – ‘(2^3)^4=8^4’ or ‘2^(3^4)=2^81’. Left 

associativity means that operators are grouped from left to right (the first case), right 

associativity means grouping from right to left (the second case). 

 The following operators are defined in ANALYTICS library: 

 ‘+’ addition operator (binary); 

 ‘-’ subtraction operator (binary); 

‘*’ multiplication operator (binary); 

‘/’ division operator (binary); 

‘^’ power operator (binary); 

‘•’ dot operator (binary); 

‘×’ cross operator (binary); 

‘-’ negation operator (unary, prefix); 

‘~’ tilde operator (unary, prefix); 

‘√’ square root operator (unary, prefix); 

‘!’ factorial operator (unary, postfix); 

‘'’ apostrophe operator (unary, postfix); 

‘`’ accent operator (unary, postfix); 

‘≡’ identically equal operator (binary); 

‘≈’ approximately equal operator (binary); 

‘≠’ not equal operator (binary); 

‘>’ greater than operator (binary); 

‘<’ less than operator (binary); 

‘≥’ greater than or equal operator (binary); 

‘≤’ less than or equal operator (binary); 

‘&’ logical and operator (binary); 

‘\’ logical or operator (binary); 

 ‘¬’ logical not operator (unary, prefix); 

 ‘?’ question operator (unary, prefix); 

‘#’ number operator (unary, prefix); 

‘||’ absolute operator (unary, outfix); 

‘‖ ‖ ’ norm operator (unary, outfix); 
Also the following ‘Special’3 operators defined: 

‘←’ left arrow operator (binary); 

‘→’ right arrow operator (binary);  

‘↑’ up arrow operator (binary); 

‘↓’ down arrow operator (binary); 

‘↔’ left-right arrow operator (binary); 

‘↕’ up-down arrow operator (binary); 

‘∂’ derivative operator (unary, prefix); 

‘∫’ integral operator (unary, prefix); 

‘∆’ delta operator (unary, prefix); 

‘∑’ sum operator (unary, prefix); 

‘∏’ product operator (unary, prefix); 

 

 General rules for all operators: 

- Binary algebraic operators (+, -, *, etc.) have precedence as determined with standard 

mathematical rules. 

- Relational operators (binary) have lower precedence than algebraic ones. 

- Binary Logical operators have lower precedence than relational ones. 

- Arrow operators (binary) have higher precedence than power operator. 

- Binary operators are all left-associative. 

- Unary operators have higher precedence than binary operators. 

- Postfix operators have higher precedence than prefix operators. 

The standard mathematical operators have default implementation for real operand types. 

Operators for other operands (complex, 3D vectors and tensors and so on) implemented in ANALYTICS 

extension libraries (see above). 

All predefined operators can be overloaded (defined) for any other operand types. The 

following restrictions are applied for operator overloading: 

- new operators cannot be defined; 

- number of operands and attributes of operators (precedence and associativity) cannot 

be changed. 

- attributes of operators (precedence and associativity) cannot be changed. 

Functions 

Syntactically function can be considered as a named operation with some data values – 

arguments. An example is the sine function ‘sin(x)’, where ‘sin’ is the name of the function and 

‘x’ is the argument. The function name determines what operation is performed with the arguments. 

                               

3  ‘Special’ operators have no predefined meaning for common data types (real, complex and 

so on) and can be used for special needs with program specific types. Note that the syntax rules 

cannot be changed for the operators in any case. 
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Function’s name can include alpha-numeric symbols, subscript and superscript digits and 

underscore symbol (the first symbol may be letter only)4. 

 In addition to arguments, a function can have parameters. For an example, the logarithm 

of ‘a’ to base ‘b’ function logb(a) has one argument ‘a’ and one parameter ‘b’. Semantically 

parameters have the same meaning as the arguments have – data values on which the operation is 

performed. Syntactically (in ANALYTICS library) parameters are enclosed in braces ‘{}’. 

General rules for functions: 

- function arguments are always enclosed in parantheses ‘()’; 

- function parameters are always enclosed in braces ‘{}’; 

- if the function has no parameter, parameter braces are not obligatory, argument 

parantheses are always obligatory; 

- function can have many parameters and/or many arguments; 

- function arguments and parameters are separated by spaces ‘ ’; 

- there can be many functions with the same name and different number and/or type of 

arguments and/or parameters. 

Some examples of syntactically correct function expressions: 

max(a b) – maximum function of two arguments; 

random() – random function with no arguments; 

log{b}(a) – logarithm of ‘a’ to base ‘b’ (one parameter ‘b’, one argument ‘a’); 

P{n m}(x) - the Associated Legendre function (two parameters ‘n’ and ‘m’ and one argument 

‘x’). 

The ANALYTICS library contains many predefined functions of real arguments. Functions for 

other argument types implemented in ANALYTICS extension libraries (see above). 

Indexing 

ANALYTICS library allows using indexing in expressions. Indexing is a method of access to 

the structured data elements. An example of structured data is array. Each array’s element has 

the unique index by which the element value is accessed. By syntax rules data indexes are written 

in square brackets ‘[]’. For an example, the i-th array element can be written as ‘A[i]’. For 

multiple indexes, each index must be written in different brackets. For an example, a matrix 

element can be written as ‘M[i][j]’. Such syntax allows slicing implementation. Slicing allows to 

get a part of structured data. Slicing is implemented via index omitting. Let we have a matrix 

(two-dimensional array) ‘M’. Then ‘M[i][]’ is the i-th matrix’ row and ‘M[][j]’ is the j-th 

matrix’ column. The ‘trail’ indexes can be omitted with their brackets. Thus, the matrix’ row can 

be written as ‘M[i]’ (which is equivalent to ‘M[i][]’ of the previous example). 

General indexing rules: 

- indexing can only be applied to variables, the variables must implement indexing 

interface (see below); 

- many indexes allowed, each index must be enclosed in square braces ‘[]’; 

- all index expressions must return values of real type only, the values must be 

(almost) integer; 

- some indexes can be omitted that means slicing, slicing can only be applied to 

variables which implement slicing interface (see below); 

ANALYTICS library contains predefined array variable types. Array variables can contain 

data of any type. Array variables have default indexing and slicing implementation for arrays up 

to third dimension. 

Arrays 

 ANALYTICS library supports using array expressions. Array expression is a structured 

expression that contains other expressions as its components. An example of array expression is 

vector – one-dimensional set of ordered items. Array expressions has the dimension – the number 

of indexes by which the components of the array are ordered.  

 By syntax rules of ANALYTICS library, the array expression must be enclosed by square 

brackets ‘[]’ and its components are separated by spaces. For example, the vector expression with 

three components can be written as ‘[i+1 j*2 k]’. For multiple dimensions, the components for 

each dimension must be written in separate brackets. For example, the 2x3 matrix expression can 

be written as ‘[[a b c] [d e f]]’. Only rectangular array expressions allowed.  

 General rules for array expressions: 

 - Array expressions enclosed with square brackets. 

 - Each dimension of array expression must be enclosed with its own brackets. 

 - Array expression’s components are separated by spaces. 

 - Only rectangular array expressions allowed. 

 ANALYTICS library supports vector and matrix expressions for boolean, real, and complex 

components.  

Syntax summary 

- Any expression can contain literals, variables, operators, functions and indexing. 

- Literals can be real numbers in simple and exponent form and complex numbers. 

- Variable names can include alpha-numeric symbols, subscript and superscript digits and 

underscore symbol. 

- Only predefined (see above) operators can be used, new operators cannot be defined. 

- Operations are performed in order of operator precedence. Operations order can be 

changed using parantheses ‘()’. 

                               

4  Along imaginary symbol I may be used as function name, because function syntax can 

always be recognized by parantheses ‘()’.  
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- Functions have parameters and arguments. Parameters are enclosed in braces ‘{}’, 

arguments are enclosed in parantheses ‘()’. Parameters and arguments are separated by 

spaces ‘ ’. 

- Indexing can only be applied to variables (those implement indexing interface. Indexes 

are enclosed in brackets ‘[]’ (each index in separate brackets). Slicing of indexed 

data can be implemented by omitting some indexes. 

- Array expressions enclosed with square brackets for each dimension. Array components 

are separated by spaces. Only rectangular arrays allowed. 

Some examples of syntactically correct formulae: 

‘sin(b)^2+cos(b)^2’     - Pythagorean trigonometric identity formula. 

‘sin(a)*cos(b)+cos(a)*sin(b)’   - Sine of angle sum formula. 

‘log{c}(a)+log{c}(b)’     - Logarithm of product formula. 

‘A[n]*r^n*sin(n*a)+B[n]*r^-n*cos(n*a)’  - Laplace's equation solution in polar coordinates.  

‘A[n]*sinh(n*Pi/L*(x-a))*sin(n*Pi/L*(y-b))’ - Laplace's equation solution in Cartesian system. 

‘[[a b -1] [0 c -c]]×[sin(a-1) e^b a*b]’ - Matrix-Vector multiplication. 

Class Hierarchy 
This part explains the base class hierarchy of ANALYTICS library. It is not needed to 

understand the hierarchy to use the library for common analytical calculations. The knowledge is 

only useful for extending library (introducing new function, overloading operators and so on). 

The main concept of ANALYTICS library is easy external extensibility. That is the library 

has the complete core which is not changed and new functionality can be implemented by (only) 

attaching external libraries. So there is strongly structured class hierarchy to implement this 

concept. 

Variable classes 

Variable is a name with associated value (of some type). The base abstract class Variable 

is intended to use this concept inside the program. The main properties of the class are: Name, 

Value and ValueType. There are two abstract classes, inherited from the Variable class. 

ScalarVariable class can contain one value. IndexedVariable class introduces interface for 

indexed value, that can contain another values accessed by indexes. The following classes 

inherited from ScalarVariable: RealVariable (contains real value), BooleanVariable (contains 

boolean value), ObjectVariable (contains value of any type). BaseArrayVariable class is inherited 

from IndexedVariable and is abstract class for variables those contain arrays (of any dimension). 

Three abstract classes ArrayVariable, MatrixVariable and BlockVariable realize interfaces for 

one-, two- and three-dimensional arrays accordingly. And finally, concrete classes of real and 

object arrays up to the third dimension are realized. 

All concrete classes, introduced in this hierarchy, are fully functional. That is they 

realize all functionality to use them in calculations. All array variables realize indexing and 

slicing interfaces. 

There are other variable types realized in extension libraries (complex variables, 3D 

vector and tensor variables and so on). They can be used in the same way as variables built in 

the ANALYTICS core library. 
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Picture 2.1. Variable class hierarchy diagram. 

 

Operator classes 

Base abstract class Operator is intended to use the concept of operator (symbol for some 

operation with operand values) inside the program. This class has properties and functions to 

define the symbol of the operator, the operation result type and the method to calculate value. 

In accordance with operator types two abstract classes are inherited from the base one: 

UnaryOperator and BinaryOperator. These classes introduce interface to define operand type(s). 

More specific classes, inherited from the last ones, define the concrete operator type and symbol 

(‘+’, ‘^’ and so on). 

The concrete classes, those realize the complete functionality (define the operand types 

and perform operations on the operand’s values) are not shown on the diagram. There are all 

realized operators for Real operands. Operators for other operand types (complex, 3D vectors and 

tensors and so on) realized in ANALYTICS extension libraries. 

There are also generic analogues for all operator classes. For an example, generic 

analogue for AddOperator is GenericAddOperator class. These generic classes can be also used to 

derive new operator classes. The generic form of these classes simplifies inheritance because 

they already contain implementation of some methods (see operator overloading below).
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Picture 2.2. Operator class hierarchy diagram. 
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Function classes 

The base abstract class Function implements the concept of function. The class has 

interface to define the name, the count and type of parameters and arguments, the type of 

returned value and the method to make operation on the data values. The class MonotypeFunction is 

directly inherited from the Function and implements the concept of function such that all 

parameters and arguments are of the same type as the returned value. At the next level of 

hierarchy all functions are divided into Elementary and Special. This division is to correspond 

with mathematics, not for programming convenience. 

 
Picture 2.3. Function class hierarchy diagram. 
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Further, each of classes is divided into Real and Complex subclasses (functions with Real 

and Complex arguments accordingly) and finally all classes are divided into simple and Parametric 

functions. Simple functions have one argument, parametric – one parameter and one argument. 

The concrete classes those realize the calculation are not shown on the diagram. There are 

many realized elementary and special functions of Real arguments – algebraic, trigonometric, 

inverse trigonometric, exponential, logarithmic, hyperbolic, inverse hyperbolic. Functions for 

other argument types (complex, 3D vectors and tensors and so on) implemented in ANALYTICS 

extension libraries (see above). 

Expression classes 

Expression classes are intended to represent data inside core algorithms of the ANALYTICS 

library. The base abstract class for all expressions is BaseExpression. 

 
Picture 2.4. Expression class hierarchy diagram. 

 

This class defines abstract interface for all expressions and implements some static 

methods to manipulate with expressions (build expressions form strings, simplify expression list 

and so on). All other expressions are divided into simple (do not contain other expressions) and 

structured (do contain other expressions) ones. Simple expressions are LiteralExpression and 

VariableExpression. Structured expressions include FunctionExpression, IndexingExpression, 

UnaryOperatorExpression and BinaryOperationsExpression (LogicalExpression, RelationalExpression, 

SumExpression, ProductExpression, PowerExpression, ArrowExpression). All expression classes 

realize methods to manipulate with them: build expressions from strings, simplify expressions, 

reconstruct expressions (convert them back to the string), building new expressions from existing 

and others. 

It is not obligatory to understand expression class functionality to use the ANALYTICS 

library. It is only needed to extend the functionality of the library in the sense of analytical 

derivative calculation (see below). 
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Working with ANALYTICS 
The main functionality of ANALYTICS library (evaluation of mathematical expressions) is 

realized in Translator class. Translator class encapsulates a set of variables and a set of 

operations (registered operators and functions). Thus Translator can parse string expressions and 

calculate their values for current variable values. 

Translator is not a static class because various translators can have different operation 

and variable sets. So to use Translator functionality an instance of the class must be created. 

Hereinafter it is supposed that the instance ‘translator’ of Translator class has been created 

Translator translator = new Translator(); 

Working with variables 

Translator class has complete interface to add and remove variables and to change their 

values. 

To add variables use Add method. This method has many overloads to add variables of 

different types. The following code examples demonstrate the process of variable addition: 

- adding Real variable 

string name = "a"; 

double v = 1.0; 

translator.Add(name, v); 

 

- adding Complex variable 

string name = "x"; 

Complex z = new Complex(1.0, -2.0); 

Variable v = new ComplexVariable(name, z); 

translator.Add(v); 

 

- adding Real array variable 

string name = "A"; 

double[] a = new double[] { 0.0, 1.0, 2.0, 3.0 }; 

Variable v = new RealArrayVariable(name, a); 

translator.Add(v); 

 

- adding variable of any type 

string name = "A"; 

Complex[] a = new Complex[] { new Complex(0,0), new Complex(1,-1), new Complex(-2,2) }; 

Variable v = new ComplexArrayVariable(name, a); 

translator.Add(v); 

 

 There are two ways to change variable values. 

1. If the direct reference to a variable is available, the value can be changed using 

Value property of the variable class.  

string name = "a"; 

double a = 1.0; 

Variable v = new RealVariable(name, a); 

translator.Add(v); 

// some code here... 

v.Value = (double)2.0; 

 

2. If there is no direct reference to a variable, it can be got by using Get method of 

the Translator class (the name of variable or its index can be used). 

Variable x = translator.Get("x"); 

x.Value = (double)3.0; 

// some code here... 

Variable y = translator.Get(1); 

y.Value = (double)4.0; 

 

NOTE about changing variable values: the type of the variable value cannot be changed. In 

spite of the property Value of the Variable class is of type Object, when setting variable value 

its type must be the same as current ValueType. The value type is determined at the variable 

creation and cannot be changed during variable lifetime. 

The Delete method of Translator class can be used to remove variables. The variable can be 

removed from the translator instance by name or its index in the translator’s table. The 

DeleteAll method removes all variables. The following code demonstrates the process of variable 

deleting. 

 

translator.Delete("x"); 

// some code here... 

translator.Delete(2); 

// some code here... 

translator.DeleteAll(); 

 

Calculating formula values 

In the simplest case the Calculate method of Translator class can be used to calculate 

formula value. The following code demonstrates the method using 
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string f1 = "sin(a)^2+cos(a)^2"; 

double r = (double)translator.Calculate(f1); 

// some code here... 

string f2 = "2*exp(z)-I*sin(z/3)"; 

Complex c = (Complex)translator.Calculate(f2); 

 

In the code above it is supposed that there are variables “a” and “z” in translator’s variable 

set and “a” is of Real type and “z” is a complex one. Note, that the return type of the Calculate 

method is Object and it can return the value of any type depending on the formula contents. So, 

the returned value must be directly casted to the type and the type must be known. 

 The Calculate method is rather slow. This is because it parses string expression and 

creates internal structure to calculate result value. Parsing methods are not optimized for 

speed, they are optimized for strong object oriented structuring and easy extensibility. Thus the 

usage of Calculate method is only recommended for single formula evaluation. 

 Another case of formula evaluation comes from the need to calculate one expression for 

various variable values. This can be done in such a way: 

- creating Formula object from string expression; 

- changing variable values; 

- calculation formula values for current variable values. 

Formula is a class intended for internal program representation of parsed mathematical 

expressions. The following code demonstrates calculation of the table of function values for 

various argument values by the above algorithm. 

 

string s = "2*(sin(x)+cos(x))"; 

Formula f = translator.BuildFormula(s); // parsing string expression 

Variable x = translator.Get("x"); 

double v = 0.0; 

double[] ax = new double[101]; 

double[] ay = new double[101]; 

for (int i = 0; i <= 100; i++) 

{ 

ax[i] = v; 

x.Value = v; // setting new variable value 

ay[i] = (double)f.Calculate(); // calculating formula value for current x value 

v += 0.01; 

} 

 

In the code, the string expression is parsed only once by the BuildFormula function which returns 

the Formula object. When the Formula instance created, its value can be calculated many times for 

various ‘x’ variable values. 

Checking expression syntax 

In all above code examples it was supposed that the string expressions were syntactically 

correct. End user applications, of course, must check the syntax correctness of user defined 

expressions. The Translator class provides methods to check expressions before calculation. 

The syntax correctness must be checked in three steps. The first, syntax rules, those do 

not need the expression to be parsed, must be checked. For an example, the parantheses in a 

mathematical expression must be pairwise and it can be checked without expression decomposition. 

Such syntax rules must be checked before any calculation by Translator’s CheckSyntax method. This 

function returns true, if all rules are fulfilled and throws an exception if not.  

The second step is to check, that a string can be decomposed into known expression types. 

For an example, the string ‘sin(x+1)’ can be decomposed as a function with name ‘sin’ and one 

argument ‘x+1’ which is itself the known expression – the sum of constant ‘1’ and variable with 

name ‘x’. This step does not need to know that the function ‘sin’ is defined or the variable ‘x’ 

exists. 

The third step checks that all elements in decomposed expression are defined. It means 

that all variables must exist. Moreover, this step needs to know the types of expression results 

to check that all operations in the expression can be performed. For an example, in given 

expression, if variable ‘x’ is Real, the operator ‘+’ must be defined for Real operands and the 

function ‘sin’ with one Real argument must be registered. 

The second and the third steps of syntax checking are implemented in Translator’s 

BuildFormula method. This method returns built Formula object, if the string expression is 

correct, and throws an exception if not. 

The following example code demonstrates common syntax checking algorithm: 

 

string s = "2*(sin(x)+cos(x))"; 

try 

{ 

// the first step of syntax checking 

if (translator.CheckSyntax(s)) 

{ 

// the second and third steps of syntax checking 

Formula f = translator.BuildFormula(s); 

if (f != null) 

{ 

// here the formula calculation code 

// using f instance. 

                    } 

} 
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} 

catch (Exception ex) 

{  

// here the exception handling code. 

} 

 

Analytical derivative calculation 

The ANALYTICS library allows to calculate derivatives of expressions. The Translator class 

(see above) contains the following method: 

 

public string Derivative(string formula, string vName) 

 

This method calculates analytical derivative of the formula by variable vName. The result 

is string representing the derivative expression. 

Here are some example codes of analytical derivative calculation: 

 

string formula; 

string derivative; 

// #1 

formula = "A*ln(x)*sin(2*x)"; 

derivative = translator.Derivative(formula, "x"); 

// derivative = (1/x)*(A*sin(2*x))+(cos(2*x)*2)*(A*ln(x)) 

// #2 

formula = "e^(1-2*x)"; 

derivative = translator.Derivative(formula, "x"); 

// derivative = e^(1-2*x)*(-2) 

// #3 

formula = "(x+1)^(x-1)"; 

derivative = translator.Derivative(formula, "x"); 

// derivative = ln(x+1)*(x+1)^(x-1)+(x-1)*(x+1)^((x-1)-1)             

  

 The examples show that the calculation is very simple. 

 Notes about derivative calculations: 

1. The formula parameter in Derivative method must be syntactically correct. The correctness 

can be checked by Translator’s CheckSyntax method. 

2. There is no need variable with the name vName (or any other) to be existing. The 

Derivative method manipulates variable names only, not their values. 

3. The derivative method does some simplification after calculation (removes zero values 

from sums, unit multipliers from products and so on). But some results can be not 

‘beautiful to see’. They can contain some superfluous braces and other ‘artifacts’. It is 

because the ANALYTICS library is not computer algebra system. The derivative calculation 

result is intended to use in the subsequent calculations (inside the program), not to 

show it to user. 

4. Not all operators supported for derivative calculations. For an example, ‘!’ operator not 

supported, because the derivation rule is not defined for it. It is not possible to 

introduce new derivation rules for operators (without rewriting core algorithms). 

5. Most of standard transcendental functions supported for derivative calculation. 

Derivation rule can be defined for any function (see below). 

 

Explicit string expressions manipulation 

The ANALYTICS library allows ‘explicit’ manipulations with ‘string expressions’. Let there 

are two strings inside the program, containing mathematical expressions ‘1-2*x’ and ‘sin(x)+2’. 

And let there is need to get the expression which is the multiplication of the given ones. This 

task can be done just manipulating with C# strings. For the above example strings the following 

steps must be done: enclose the first expression into parentheses, enclose the second expression 

into parentheses and finally concatenate the result strings with the ‘*’ operator. The algorithm 

seems to be simple, but it becomes more and more complicated with the number of operations 

increase. 

The Expression structure (do not confuse with the BaseExpression from class hierarchy) 

simplifies such string manipulations. This structure type is just ‘simple string wrapper’ 

(pic. 3.1). It contains explicit conversion operators – from string and to string and overloaded 

operators implementing algebraic operations ‘+’, ‘-’, ‘*’, ‘/’, ‘^’ (power). This implementation 

allows manipulating string expressions in ‘natural’ manner. 

Consider an example of using the Expression structure for the following task: realize 3D 

‘analytical’ vector. This vector must contain three string components, all components must be 

mathematical expressions and all vector manipulations (sum, vector product, length and so on) 

must be analytical. 
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Picture 3.1. Expression class. 

 

 The following code is the (partial) implementation of ‘analytical’ 3D vector: 

    public struct StringVector 

    { 

        #region Data members 

        private Expression e1; 

        private Expression e2; 

        private Expression e3; 

        #endregion Data members 

 

        /// <summary> 

        /// Constructor. 

        /// </summary> 

        /// <param name="x1"></param> 

        /// <param name="x2"></param> 

        /// <param name="x3"></param> 

        public StringVector(string x1, string x2, string x3) 

        { 

            e1 = (Expression)x1; 

            e2 = (Expression)x2; 

            e3 = (Expression)x3; 

        } 

 

        /// <summary> 

        /// Dot Product 

        /// </summary> 

        /// <param name="v1"></param> 

        /// <param name="v2"></param> 

        /// <returns></returns> 

        public static string Dot(StringVector v1, StringVector v2) 

        { 

            return (string)(v1.e1 * v2.e1 + v1.e2 * v2.e2 + v1.e3 * v2.e3); 

        } 

 

        /// <summary> 

        /// Cross Product 

        /// </summary> 

        /// <param name="v1"></param> 

        /// <param name="v2"></param> 

        /// <returns></returns> 

        public static StringVector operator *(StringVector v1, StringVector v2) 

        { 

            return new StringVector( 

                (v1.e2 * v2.e3 - v1.e3 * v2.e2), 

                (v1.e3 * v2.e1 - v1.e1 * v2.e3), 

                (v1.e1 * v2.e2 - v1.e2 * v2.e1) 

            ); 

        } 

    } 

 

 The StringVector structure contains three data members e1, e2, e3 of type Expression to 

encapsulate data for three vector components. The constructor takes three string arguments, which 

are converted to Expression data using explicit operator. 
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 Main advantages of using Expression structures are demonstrated in Dot and Cross methods. 

The calculation codes of vector dot and cross products are similar to if the vectors have double 

components. 

 Consider the result of using StringVector structure: 

 StringVector x1 = new StringVector("sin(u)", "cos(v)", "0"); 

 StringVector x2 = new StringVector("cos(u)", "-sin(v)", "0"); 

 StringVector r =  x1 * x2; 

The result vector r will contain three expression components ‘0’, ‘0’ and ‘sin(u)*(-sin(v))-

cos(v)*cos(u))’. 

 NOTE about using Expression structure: all string values to manipulate with Expression 

structure must be syntactically correct; else, the exception will be thrown. The syntax can be 

checked by Translator’s CheckSyntax method (see above). 

Extending ANALYTICS 
The ANALYTICS library provides complete core for parsing and calculating mathematical 

expressions. It also contains many predefined ‘standard’ functions – trigonometric, hyperbolic 

and so on and realized operators for real arguments. So, the library can be used without 

modification to provide in the end user program the interface for user to input data in the form 

of mathematical expressions. 

Another goal of the library is to provide the possibility of mathematical calculations 

with the program specific data. For an example, let there is a program for signal processing. And 

the program must allow the end user to make various operations with signals – add two signals, 

multiply a signal by real values, calculate exponents and logarithms of signals and so on. This 

can be done using the ANALYTICS library. The core algorithms of ANALYTICS library can be used to 

calculate expressions containing signals as variables. The only thing required is to provide 

operations, defined for signals (because they are program specific data). 

The ANALYTICS library is built by such technology that allows easily introduce operations 

with program specific data without changing core algorithms. All data operations (operators, 

functions) are presented inside the library as classes. To add an operation with program specific 

data a descendant of some class must be implemented. This class will be automatically found and 

used to calculate expression results. 

The next part explains implementation of classes to define operations with program 

specific data. 

Overloading operators 

To overload an operator for program specific data operand types the descendant of one of 

the defined operator classes must be implemented. There are base abstract classes for all defined 

operators (see class hierarchy): AddOperator, SubtractOperator and so on. The following code 

demonstrates the operator overloading for arrays of real numbers: 

    /// <summary> 

    /// (Double Array) * (Double) = (Double Array) 

    /// </summary> 

    public sealed class ArrayRealMultiply : MultiplyOperator 

    { 

        protected override Type GetOperand1Type() 

        { 

            return typeof(double[]); 

        } 

 

        protected override Type GetOperand2Type() 

        { 

            return typeof(double); 

        } 

 

        protected override Type GetReturnType() 

        { 

            return typeof(double[]); 

        } 

         

        protected override object Operation(object operand1, object operand2) 

        { 

            if (operand1 == null) return null; 

 

            double[] a = (double[])operand1; 

            double r = (double)operand2; 

 

            int l = a.Length; 

            double[] result = new double[l]; 

 

            for (int i = 0; i < l; i++) 

            { 

                result[i] = a[i] * r; 

            } 

 

            return result; 

        } 

    } 
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The ArrayRealMultiply class is inherited from MultiplyOperator, this means it overloads “*” 

operator. The class overrides GetOperand1Type, GetOperand2Type and GetReturnType methods and 

defines that the first operand is of type array of doubles and the second is of type double, the 

operation’s result is double array. Another overridden method is Operation – this method 

implements the action that must be performed on operands. 

 The following example demonstrates overloading of “+” operator for arrays of real values: 

 

    /// <summary> 

    /// (Double Array) + (Double Array) = (Double Array) 

    /// </summary> 

    public sealed class ArrayAdd : AddOperator 

    { 

        protected override Type GetOperand1Type() 

        { 

            return typeof(double[]); 

        } 

 

        protected override Type GetOperand2Type() 

        { 

            return typeof(double[]); 

        } 

 

        protected override Type GetReturnType() 

        { 

            return typeof(double[]); 

        } 

         

        protected override object Operation(object operand1, object operand2) 

        { 

            if (operand1 == null || operand2 == null) return null; 

 

            double[] a1 = (double[])operand1; 

            double[] a2 = (double[])operand2; 

 

            int l = a1.Length; 

            double[] result = new double[l]; 

 

            for (int i = 0; i < l; i++) 

            { 

                result[i] = a1[i] + a2[i]; 

            } 

 

            return result; 

        } 

    } 

 

The classes of operators will be automatically found by ANALYTICS library and used to implement 

operations with operands of defined types. 

The same result, as in two previous code examples, can be achieved by using generic 

analogues of base operators. The following code demonstrates this case: 

 

    /// <summary> 

    /// (Double Array) * (Double) = (Double Array) 

    /// </summary> 

    public sealed class ArrayRealMultiply : GenericMultiplyOperator<double[], double, double[]> 

    { 

        protected override double[] TypedOperation(double[] operand1, double operand2) 

        { 

            if (operand1 == null) return null; 

 

            int l = operand1.Length; 

            double[] result = new double[l]; 

 

            for (int i = 0; i < l; i++) 

            { 

                result[i] = operand1[i] * operand2; 

            } 

 

            return result; 

        } 

    } 

 

    /// <summary> 

    /// (Double Array) + (Double Array) = (Double Array) 

    /// </summary> 

    public sealed class ArrayAdd : GenericAddOperator<double[], double[], double[]> 

    { 

        protected override double[] TypedOperation(double[] operand1, double[] operand2) 

        { 



 

ANALYTICS C# Development Library Manual 

 

Copyright © Sergey L. Gladkiy 

            if (operand1 == null || operand2 == null) return null; 

 

            int l = operand1.Length; 

            double[] result = new double[l]; 

 

            for (int i = 0; i < l; i++) 

            { 

                result[i] = operand1[i] + operand2[i]; 

            } 

 

            return result; 

        } 

    } 

 

Using generic base operators is “shorter” because only one method (TypedOperation) must be 

overridden. Operand and return types are defined as parameters of the generic class the operator 

is inherited from. Both inheritance cases, generic and not generic, absolutely equivalent for 

ANALYTICS core algorithms. 

Explicitly overloaded operators 

The operator overloading in ANALYTICS library is intended to implement operations on 

program specific type data. Often, for such data, some operators are already overridden “inside” 

the program (that means C# operator overloading). And these “explicitly overloaded operators” can 

be used to implement operations on such data inside ANALYTICS core algorithms. In other words, if 

there is an operator “explicitly overloaded” it will be automatically found and used to calculate 

result for the suitable operation. For an example, as Complex type overloads math operators, such 

actions as addition, subtraction and so on can be performed for complex numbers without deriving 

new operator classes. 

There are some constraints for using “explicitly overloaded” operators: 

1. Not all operators can be “explicitly overloaded”, because not all ANALYTICS operators 

have analogous C# operators or their “meaning” can be ambiguous (“^” for an example). 

So, only following operators can be “explicitly overloaded”: “+”, “-” (unary and 

binary), “*”, “/”, ‘≡’ (==)5, ‘≠’ (!=), ‘>’, ‘<’, ‘≥’ (>=), ‘≤’ (<=), ‘&’, ‘\’ (|), 

‘¬’ (!). 

2. “Implicit” overloading (deriving new operator classes) has higher priority. That is if 

there are both “explicit” and “implicit” operators – the last will be used to 

calculate operation result. 

Both overloading methods can be used in combination. “Implicit” overloading (using new 

operator classes) can be used as for complimenting “explicit” method, as for overriding its 

behavior. 

Introducing new functions 

 Implementing functions for program specific data is more general way of extending library 

functionality. A Function can have any valid name, any number of arguments of different types and 

any return type. To introduce new function a descendant of one of abstract function classes must 

be implemented. The choice of a base class is wider, than for operators (see class hierarchy). 

For common argument types (real or complex), one of the predefined abstract classes can be used 

as ancestor class: RealElementaryFunction, RealParametricElementaryFunction, 

ComplexElementaryFunction, ComplexParametricElementaryFunction. As an axample, the code of class, 

implementing sine function of complex argument, is listed below: 

 

    /// <summary> 

    /// Sine function of Complex Argument 

    /// </summary> 

    public sealed class SineComplex : ComplexElementaryFunction 

    { 

        protected override string GetName() 

        { 

            return "sin"; 

                               
5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  C# analogue operators shown in parentheses. 
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        } 

 

        protected override Complex Func(Complex x) 

        { 

            return Complex.Sin(x); 

        } 

    } 

 

The class is inherited from ComplexElementaryFunction because it implements a function with one 

argument of Complex type. The only methods overridden are GetName and Func. The former defines 

the function name (used in expressions) and the later implements the function operation itself. 

Another example demonstrates the logarithm function implementation of complex argument and base: 

 

    /// <summary> 

    /// Logarithm function of Complex argument 

    /// (NOTE: the Base of logarithm is the Parameter of the function) 

    /// </summary> 

    public sealed class LogarithmComplex : ComplexParametricElementaryFunction 

    { 

        protected override string GetName() 

        { 

            return "log"; 

        } 

 

        protected override Complex Func(Complex parameter, Complex argument) 

        { 

            return Complex.Log(argument)/Complex.Log(parameter); 

        } 

    } 

 

The class is inherited from ComplexParametricElementaryFunction because it implements a function 

with one parameter and one argument of Complex type. 

 In general case, to introduce new function the class must be inherited from the base 

abstract class Function. All abstract methods of the class must be overridden. The methods must 

define the number and types of parameters and arguments and the function return type. The 

following code example demonstrates the implementation of Min function that calculates the 

minimum value in an array of real numbers: 

 

    /// <summary> 

    /// Min array element 

    /// </summary> 

    public sealed class MinArray : Function 

    { 

        protected override string GetName() 

        { 

            return "Min"; 

        } 

 

        protected override int GetArgumentCount() 

        { 

            return 1; 

        } 

 

        protected override Type[] GetArgumentTypes() 

        { 

            return new Type[] { typeof(double[]) }; 

        } 

 

        protected override int GetParameterCount() 

        { 

            return 0; 

        } 

 

        protected override Type[] GetParameterTypes() 

        { 

            return null; 

        } 

 

        protected override Type GetResultType() 

        { 

            return typeof(double); 

        } 

 

        protected override object DoCalculate(object[] parameters, object[] arguments) 

        { 

            double[] a = (double[])arguments[0]; 

            if (a == null || a.Length == 0) return double.NaN; 

 

            double result = a[0]; 

            int l = a.Length; 
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            for (int i = 1; i < l; i++) 

                if (a[i] < result) result = a[i]; 

 

            return result; 

        } 

    } 

 

The function has one argument of type real array and returns real value. 

 A little shorter way to introduce new function for the specific types is using base 

generic function classes. These classes use generic parameters to define the types of arguments. 

Thus, only Name and calculation algorithm must be provided to define new function class. The 

following code demonstrates the previous example function implementation using base generic 

class: 

 

    /// <summary> 

    /// Min array element 

    /// </summary> 

    public sealed class MinArray : GenericSimpleFunction<double[], double> 

    { 

        protected override string GetName() 

        { 

            return "Min"; 

        } 

 

        protected override double Func(double[] a) 

        { 

            if (a == null || a.Length == 0) return double.NaN; 

 

            double result = a[0]; 

            int l = a.Length; 

            for (int i = 1; i < l; i++) 

                if (a[i] < result) result = a[i]; 

 

            return result; 

        } 

    } 

 

The class is inherited from GenericSimpleFunction, which means it has one argument and zero 

parameters. The argument type is real array and the function’s result is real which is provided 

by the first and the second generic parameters accordingly. 

 The ANALYTICS library contains base generic function classes to implement functions with 

up to two parameters and two arguments of any type. 

 NOTE about functions: there can be many functions with the same name but different count 

or/and type of arguments (parameters). 

Implementing indexing 

Indexing can be applied for variables only. To implement indexing for program specific 

data new variable class must be inherited from the abstract class IndexedVariable (or from one of 

its descendants). The inherited class must override methods defining the number of data indexes, 

data access methods and slicing implementation. 

As an example of indexing implementation, the (partial) code of standard MatrixVariable 

class is listed below: 

     

    /// <summary> 

    /// Base abstract class for all matrix variables. 

    /// NOTE: Slicing is implemented. 

    /// </summary> 

    public abstract class MatrixVariable : BaseArrayVariable 

    {         

        /// <summary> 

        /// 2 indexes 

        /// </summary> 

        /// <returns></returns> 

        protected override sealed int GetIndexCount() 

        { 

            return 2; 

        } 

 

        /// <summary> 

        /// Slicing is implemented for Matrix variables 

        /// </summary> 

        /// <returns></returns> 

        protected override bool GetSlicingImplemented() 

        { 

            return true; 

        } 

 

        /// <summary> 

        /// Sliced item is array of BaseType 
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        /// </summary> 

        /// <param name="indexes"></param> 

        /// <returns></returns> 

        public override Type GetItemType(int[] indexes) 

        { 

            if ( (indexes[0] >= 0 && indexes[1] < 0) 

                || (indexes[0] < 0 && indexes[1] >=0) ) 

            { 

                return BaseType.MakeArrayType(); 

            } 

 

            return BaseType; 

        } 

 

        /// <summary> 

        /// Implements Array Slicing 

        /// </summary> 

        /// <param name="indexes"></param> 

        /// <returns></returns> 

        public override object GetItemValue(int[] indexes) 

        { 

            // Row 

            if (indexes[0] >= 0 && indexes[1] < 0) 

            { 

                int len = ColumnCount; 

                Array result = Array.CreateInstance(BaseType, len); 

                int[] row = new int[] { indexes[0], 0 }; 

 

                for (int j = 0; j < len; j++) 

                { 

                    row[1] = j; 

                    object x = data.GetValue(row); 

                    result.SetValue(x, j); 

                } 

 

                return result; 

            } 

            else 

            { 

                // Column 

                if (indexes[0] < 0 && indexes[1] >= 0) 

                { 

                    int len = RowCount; 

                    Array result = Array.CreateInstance(BaseType, len); 

                    int[] column = new int[] { 0, indexes[1] }; 

 

                    for (int i = 0; i < len; i++) 

                    { 

                        column[0] = i; 

                        object x = data.GetValue(column); 

                        result.SetValue(x, i); 

                    } 

 

                    return result; 

                } 

            } 

 

            // Item 

            return base.GetItemValue(indexes); 

        } 

    } 

 

The class overrides GetIndexCount method which returns 2, because matrix element has two indexes. 

The method GetSlicingImplemented returns true, that means the variable supports slicing. 

GetItemType method returns the type of indexed data, taking into account slicing implementation. 

If one of indexes is less than zero it means that the data must be ‘sliced’ by this index. For 

matrix data it means that the returned data is array (matrix row or column). The GetItemValue 

method implements access to data implementing slicing analogously to GetItemType method. 

 NOTE about indexing implementation: index type is always supposed to be integer and 

cannot be redefined. 

 

Introducing function derivatives 

Extending ANALYTICS library in the sense of derivative calculation differs from the other 

extensions. For example, the derivative rules cannot be redefined for operators, because these 

rules are the base of the mathematics. 

The only derivative definition allowed is the function derivative. To define a function 

derivative the descendant of FunctionalDerivative class must be derived and its abstract methods 

must be implemented. The methods are: 
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protected abstract string GetFunctionName(); - name of the function. 

protected abstract int GetParameterCount();  - the number of function’s parameters. 

protected abstract int GetArgumentCount(); - the number of function’s arguments. 

public abstract BaseExpression Derivative(DerivativeContext context, FunctionExpression 

function, string vName); 

 

The first three methods define what function the derivative rule is applied for. Note that 

the types of parameters and arguments are not defined. It differs from defining function for 

calculation because derivative calculation does not depend on the types, but calculation of 

functions does. 

The last method defines the rule itself. This method takes function parameter of 

FunctionExpression class (see class hierarchy above) and vName parameter – the name of variable 

for derivative. The context parameter is only needed to pass into other derivative methods. The 

result of the method is BaseExpression object. So, the method must get result expression from the 

input function expression. 

In general case it is rather complicated to implement the algorithm to calculate function 

derivative. The methods of expression classes (see class hierarchy) must be used to build the 

result expression. It is because the derivative rules are really complicated for general case of 

function with many arguments and parameters. Consider the derivative of logarithm function as an 

example: 
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These rules cannot be defined for all functions generally, they must be defined for any function 

individually. 

 But for standard elementary functions of one argument the derivative rule can be 

generalized, using the following mathematical formula: 
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The SimpleFunctionalDerivative class implements this rule. This is an abstract class to implement 

derivative rule for functions with one argument. It overrides the base Derivative method 

(realizing the above rule). The only abstract method of the class which must be overridden in 

descendants is 

protected abstract BaseExpression BaseDerivative(BaseExpression argument); 

The argument parameter is g  function in the formula above. The implementation of the method is 

rather simple for most of standard transcendental functions. Consider the code of class, 

implementing the derivative for sine function, as an example: 

 

    /// <summary> 

    /// Sine derivative 

    /// </summary> 

    public sealed class SineDerivative : SimpleFunctionalDerivative 

    { 

        protected override string GetFunctionName() 

        { 

            return "sin"; 

        } 

 

        protected override BaseExpression BaseDerivative(BaseExpression argument) 

        { 

            return FunctionExpression.CreateSimple("cos", argument); 

        } 

    } 

 

 The implementation is rather simple. The method GetFunctionName tells that the derivative 

for function with name ‘sin’ is defined. The method BaseDerivative creates new expression – 

function ‘cos’ with one given argument, because     xx
dx

d
cossin  . 

 As can be seen from the example, the methods of expression classes (see class hierarchy) 

can be used to easily build result expressions. There are many useful methods to create sum, 

difference, product, division, power or other expressions from the existing ones. Furthermore, 

operator overloadings for all algebraic operations (‘+’. ‘-‘, ‘*’, ‘/’, ‘^’ (power)6) with 

expressions are available for convenience of using natural notations in program code. 

 ANALYTICS derivative engine supports easy definition of differentiation rules for other, 

more complicated functions. For an example, in the case of two variable function, the chain rule 

for partial differentiation can be generalized by the following formulae: 
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6  Overloaded operator ‘^’ MUST be enclosed in parentheses when using in expressions, 

because C# ‘^’ operator has lower precedence than algebraic operators have. 
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Abstract class BinaryFunctionalDerivative implements this rule and all binary function 

derivatives can be realized easily using this abstraction. Only two methods must be defined in 

this case: 

protected abstract BaseExpression BaseDerivative1(BaseExpression argument1, BaseExpression 

argument2); 

protected abstract BaseExpression BaseDerivative2(BaseExpression argument1, BaseExpression 

argument2); 

 

As for parametric functions, the chain rule can be applied for them in the case when parameter 

does not depend on the variable(s). There are abstract implementation of supporting chain rule 

for functions with up to two variables and two parameters (not depending on variables). The 

abstract class hierarchy diagram presented on picture 4.1. 
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Picture 4.1. Functional derivatives class hierarchy diagram. 
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ANALYTICS Extensions 
The ANALYTICS is a complete core library for parsing and calculating mathematical 

expressions. And there are some extensions of the library those implement special functionality. 

Extension is a library that is not needed for core algorithm but which introduces new 

functionality if available. Each extension can introduce the following features: 

- recognition of new literal types; 

- new variable types; 

- operators for special types; 

- functions for special argument types. 

The next part contains description of existing extensions of the ANALYTICS library. 

ANALYTICS Statistics 

 Statistics extension for ANALYTICS library introduces base statistical analysis functions 

for real sample data. It allows evaluating base statistical properties of the sample, such as 

mean value, median, mode, standard deviation, variance and covariance. Other functionality 

includes: generation of number sequences (Fibonacci, prime numbers and many others); creating 

arithmetic, geometric and harmonic progressions; working with probability distributions. 

 The next part contains detailed information about the functions, realized in the 

Statistics extension library and base processing cases. 

Base statistical functions 

 Most of statistical functions work with real array data. The most of the functions also 

realized for real matrices and they processed by rows, that is statistical analysis is made for 

each separate row and the result is array of data for each row. 

 

Evaluating base statistical characteristics: 

 

Mean{P}(X)– mean of the X array (matrix rows); here P parameter is the ‘power’ of the mean 

algorithm (https://en.wikipedia.org/wiki/Mean#Power_mean), -1 – harmonic, 0 – geometric, 1 – 

arithmetic, 2 – quadratic. 

Median(X) – median of the X array (matrix rows). 

Mode(X) – mode of the X array (matrix rows), commonly used for arrays of integer values. 

Variance(X) – variance of the X array (matrix rows). 

Deviation(X) – standard deviation of the X array (matrix rows). 

Covariance(X Y) – covariance of the X and Y arrays (matrix rows). 

 

Processing data: 

 

Sort{P}(X)– sorts the X array values; here P parameter is the order of sorting -1 – descending 

order, 1 – ascending order. 

Sort{C P}(X)– sorts the X matrix rows; here P parameter is the order of sorting -1 – descending 

order, 1 – ascending order; C parameter is the column number for sorting the matrix’ rows. 

Array(M) – transforms the M matrix to the array (by rows). 

Array{min max}(N) – generates array of N uniform real values on the interval [min..max]. 

Reverse(X) – reverses the order of the X array elements. 

Odd(X) – elements of the X array (rows of matrix) with odd indexes (the first index is 0). 

Even(X) – elements of the X array (rows of matrix) with even indexes (the first index is 0). 

Sample(X) – different samples in the X array (matrix rows) in ascending order, commonly used for 

integer values. 

Frequency(X) – number of different samples (in ascending order) in the X array (matrix rows), 

commonly used for integer values. 

Histogram{N}(X)– creates the histogram for X array values (matrix rows) with N subintervals. 

Values{min max}(X) – extracts values from the X array (matrix rows) laying on the [min..max] 

interval. The order of values kept as in the X. 

Items{N}(X) – extracts items of the X array (matrix rows) with indexes, defined in the N array 

(must contain integer values). The number of indexes can be greater than the length of X, the 

indexes with the same values allowed many times, the order of items defined by the indexes. 

 

Here is the example code for base statistical characteristics evaluation of a real array: 

 

double[] av = new double[16] { 0.2, 0.2, 0.1, 0.25, 0.35, 0.15, 0.04, 0.01, 0.12, 0.1, 0.02, 0.1, 

0.15, 0.25, 0.05, 0.4 }; 

Translator translator = new Translator(); 

translator.Add("A", av); 

 

string fm = "Mean{1}(A)"; 

double m = (double)translator.Calculate(fm); 

 

string fmn = "Median(A)"; 

https://en.wikipedia.org/wiki/Mean#Power_mean
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double mn = (double)translator.Calculate(fmn); 

 

string fmd = "Mode(A)"; 

double md = (double)translator.Calculate(fmd); 

 

string fv = "Variance(A)"; 

double v = (double)translator.Calculate(fv); 

 

string fd = "Deviation(A)"; 

double d = (double)translator.Calculate(fd); 

 

The output result for the data is: 

 

Mean      of A = 0.155625 

Median    of A = 0.135 

Mode      of A = 0.1 

Variance  of A = 0.012124609375 

Deviation of A = 0.440447215906742 

Number sequences and progressions 

 The Statistics extension contains functions for generating sequences of special numbers. 

There are the following functions for three special cases: 

 

xxx(N) – generates sequence of N numbers. 

xxx{X0}(N) – generates sequence of N numbers beginning from the X0 value. 

xxx(X1 X2) – generates sequence of numbers on the interval [X1..X2]. 

 

Here xxx is the name of the sequence to generate. The following sequences supported: Fibonacci, 

Primes, Composites, Naturals, Integers, Odds, Evens, Squares, Cubes, Factorials. The type of 

numbers generated follows directly from the name. The X0 parameter in the second function can be 

not a member of the sequence, and then the first generated value is greater or equal to X0.  

 

 Another type of number sequence is progression. The library supports arithmetic, 

geometric and harmonic progressions. There are the following functions for working with 

progressions: 

 

xxx{A1 P}(N) – generates N values of progression with the first member A1 and parameter P. 

xxx{N}(A1 P) – generates N-th element of progression (the first number is 1) with the first 

member A1 and parameter P. 

xxxSum{A1 P}(N) – calculates sum of N members of progression with the first member A1 and 

parameter P. 

 

Where xxx is the name of progression: Arithmetic, Geometric or Harmonic. 

 

Let us consider simple example code for generating number sequences: 

 

Translator translator = new Translator(); 

 

string fp = "Primes(0 100)"; 

double[] p = (double[])translator.Calculate(fp); 

 

string fg = "Geometric{2 1/2}(10)"; 

double[] g = (double[])translator.Calculate(fg); 

 

The output for the code is the following: 

 

Prime numbers = [25] 

(2  3  5  7  11  13  17  19  23  29  31  37  41 

 43  47  53  59  61  67  71  73  79  83  89  97) 

Geometric progression = [10] 

(2  1  0.5  0.25  0.125  0.0625  0.03125  0.015625  0.0078125  0.00390625) 

 

The first function generated the sequence of all prime numbers on the interval [0..100]. The 

second function produced first ten members of geometric progression with initial value 2.0 and 

common ratio 0.5. 

Probability distributions 

 Probability distributions allow generate discrete values for probability distribution 

functions (PDF), cumulative distribution functions (CDF), inverse distribution functions 

(quantiles) and random numbers. The functions for the purposes are: 
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xxxPDF{X0 P}(X1 X2 N) – generates N values of the PDF on the interval [X1..X2] (X0 and P are the 

parameters of the distribution according to 

https://en.wikipedia.org/wiki/List_of_probability_distributions). 

xxxCDF{X0 P}(X1 X2 N) – generates N values of the CDF on the interval [X1..X2]. 

xxxQuantile{X0 P}(X1 X2 N) – generates N values of the quantile function on the interval 

[X1..X2]. 

xxxRnd{X0 P}(X1 X2 N) – generates N random values for the distribution on the interval [X1..X2]. 

 

Here xxx is the name of distribution. The following distributions supported: Gauss (normal 

distribution), Laplace, Cauchy, Gumbel, Logistic, Exponential (exponential distribution has one 

parameter only and all functions for it must be called without the X0 value). 

 

Let us consider a simple example code of using random values generators: 

 

Translator translator = new Translator(); 

 

string fg = "Histogram{11}(GaussRnd{4 1}(0 5 1000000))"; 

double[] g = (double[])translator.Calculate(fg); 

 

The output for the code is: 

 
Histogram = [11] 

(190  946  3955  12497  32818  70985  124786  180530  211171  202693  159429) 

 

The function ‘GaussRnd{4 1}(0 5 1000000)’ generates one million of random numbers on the interval 

[0..5] distributed according to the Gauss probability function with parameters µ=4 and σ=1. Then 

the histogram of the values created for 11 subintervals. As it is expected, the maximum number of 

values is in the 9-th subinterval that includes the point 4 (the mean or expectation of the 

distribution).  

Numerics extension for ANALYTICS 

 Numerics extension for ANALYTICS library is a set of ready-to-use numerical tools totally 

integrated with the symbolic capabilities of the library, like analytical differentiation. The 

numerical tools include: least squares approximation (curve fitting and higher dimensional data 

approximation); numerical calculation of one- and two- dimensional definite integrals; ordinary 

differential equation system solution (initial value problems); function analysis (one 

dimensional function roots and extremum search); nonlinear equation systems solution. 

 

The most of numerical algorithms realized in MATHEMATICS library and the Numerics extension just 

provides special classes for the integration between the numerical analysis and the analytical 

capabilities. The integration classes allows providing all input data for the algorithms in the 

symbolic form.  

 

The advantages of using analytical data with the numerical methods: 

- Convenient data representation (as math expression) for developer and user; 

- User defined data for algorithms (for example, approximation function, integrand 

function); 

- Automatic derivative evaluation if required (for example, nonlinear equation solution); 

- No need to write special classes for function method references; 

- Simple result representation as a string data (for subsequent serialization or network 

transfer). 

 

The next part contains information about main classes for numerical algorithms and explains the 

common usage of realized numerical tools with the analytical capabilities. 

Approximation 

The approximation tool allows making fitting multidimensional data (depending on many variables) 

with arbitrary, user defined basis functions. The main purpose of the fitting is to find such 

coefficients of basis functions, which gives minimal error (in some math sense) between the data 

and the approximation function. 

The base abstract class for approximation algorithm Approximator<T> defined in 

Analytics.Numerics.Approximation. The main method of the class is: 

public abstract double[] Approximate(T basis, double[][] vData, double[] fData); 

https://en.wikipedia.org/wiki/List_of_probability_distributions
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where ‘basis’ – the Basis instance for approximation; ‘vData’ - variable values (approximation 

nodes); ‘fData’ - function values. The method returns calculated coefficients for specified basis 

function and approximation data. 

The most popular approach of approximation is the least squares method 

(https://en.wikipedia.org/wiki/Least_squares). The LinearLeastSquares class realizes the least 

squares approximation with linear basis (linearly depending on the coefficients). 

The approximation algorithm requires the instance of Basis class, defined in 

Analytics.Numerics.Basis. This is an abstract class for base basis functionality. The main method 

of the class is the function for calculation of the basis value in specified point: 

public abstract double F(double[] vValues, double[] cValues); 

The method accepts as arguments the variable values (point coordinate) and the coefficient values 

and returns the basis value. 

The fully functional basis class for linear least squares approximation is LinearScalarBasis. It 

has the following constructor: 

public LinearScalarBasis(string[] variables, string coefficient, Variable[] parameters, string[] 

functions) 

where ‘variables’ – names of variables (commonly ‘x’, ’y’, …); ‘coefficient’ – name of 

coefficient variable (commonly ‘C’); ‘parameters’ – additional parameter variables (can be nil); 

‘functions’ – the array of basis functions expressions (depending on specified variables and 

parameters). 

Let us consider an example of curve fitting (approximation of one-dimensional data) with 

arbitrary set of basis functions. The code for the algorithm is the following: 

// List of variable names (1 variable 'x' for 1D approximation). 
string[] variables = new[] {"x"}; 
// List of basis functions for approximation (depending on the 'x' variable). 
string[] functions = new[] { "e^x", "sin(x)", "e^-x", "x^(-2)", "3^(-x)", "sinh(x/2)" }; 
 
// Create the basis with the specified functions. 
LinearBasis basis = new LinearScalarBasis(variables, "C", null, functions); 
 
LinearApproximator approximator = new LinearLeastSquares(); // Linear Least Squares approximator. 
double[] cValues = approximator.Approximate(basis, vData, fData); // Calculate the optimal basis 
coefficients. 
 
// Use the basis with optimal coefficients. 
 

As can be seen from the example above, the approximation made in five lines of code: 

1. Create the array of variable names (containing one value ‘x’ for one dimensional case). 

2. Create the array of basis functions (analytical expressions), containing six elements. 

3. Create the basis instance with specified basis functions. 

4. Create the approximator instance. 

5. Find the approximation coefficients. 

Once the coefficients have calculated, they can be used to evaluate the basis value for any point 

(variable values). 

 

The example code above uses the instance of LinearScalarBasis class. This class realizes the 

basis concept for scalar basis functions – it is defined by a set of functions, each function 

returns one scalar (real) value. Another functional class for linear approximation is 

LinearVectorBasis. The class realizes concept of vector linear basis – it is define by one basis 

function which returns vector value. The class has the following constructor: 

 

public LinearVectorBasis(string variable, int order, string coefficient, int dimension, Variable[] 

parameters, string function) 

 

where ‘variable’ – names of vector variable (commonly ‘X’); ‘coefficient’ – name of coefficient 

variable (commonly ‘C’); ‘parameters’ – additional parameter variables (can be nil); ‘f’ – the 

basis function expressions (depending on specified variables and parameters) – it must return 

vector value (array of real values); ‘order’ – order of basis; ‘dimension’ – dimension of basis. 

 

https://en.wikipedia.org/wiki/Least_squares
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Here is the code for curve fitting using linear vector basis: 

 

// Setting parameters for approximation. 

int dim = 1; // One dimension. 
double[] exponents = new double[] {0.0, 0.5, -0.5, -3.0}; // exponent values 
int order = exponents.Length; // Basis order is the size of the array. 
Variable A = new RealArrayVariable("A", exponents); // Vector variable for exponent array. 
double[] nums = new double[] {1.0, 0.2, 0.1, 0.4}; // Sine period values 
Variable B = new RealArrayVariable("B", nums); // Vector variable for period array. 
Variable[] parameters = new Variable[]{A, B}; // Parameters for Vector basis. 
string func = "e^(A*X[0])*sin(B*X[0])"; // Vector function for basis - returns real vector. 
 
 
// Create the basis with the specified function and parameters. 
LinearBasis basis = new LinearVectorBasis("X", order, "C", dim, parameters, func); 
LinearApproximator approximator = new LinearLeastSquares(); // Linear Least Squares approximator. 
double[] cValues = approximator.Approximate(basis, vData, fData); // Calculate the optimal basis 

coefficients. 

// Use the basis with optimal coefficients. 
 

The latter example’s general algorithm is the same as the former: create basis instance, create 

appropriate approximator and calculate the basis’ coefficients. The difference is in the basis 

instance creation. First, only one basis function required (func variable), not an array of 

functions. The basis function must be vector function – must return array of real values. For 

this purpose, commonly, it requires additional parameters of vector type (A nad B variables). 

Finally, the dimension and order of the basis must be directly specified in constructor. 

 

Advantages of using vector basis are the following: 

- Simple basis function expression (in vector form). 

- Easily create high-order basis (using big array parameter). 

- Change the basis without changing the function (use another parameter array). 

The advantages only remain when using basis function of the same type (exponents and periods in 

the case). When functions of different type required it is recommended using the scalar basis. 

 

There are predefined basis classes for commonly used cases of basis functions. The classes do not 

require the function expressions and the parameter variables for construction, they implement the 

functionality internally. The classes are: 

- GeneralizedExponential (a^x basis functions). 

- ExponentBasis (e^x basis functions). 

- Fourier (sine and cosine Fourier series). 

- Polynomial (x^k basis functions). 

- Fourier2D (sine and cosine Fourier series for two- dimensional case). 

 

For nonlinear least squares approximation (https://en.wikipedia.org/wiki/Non-

linear_least_squares) there is the fully functional descendant of NonlinearBasis – 

NonlinearScalarBasis which has the following constructor: 

 

public NonlinearScalarBasis(string[] variables, string[] coefficients, Variable[] parameters, string 
function) 
 

where ‘variables’ – names of variables (commonly ‘x’, ’y’, …); ‘coefficients’ – names of 

coefficient variables (commonly ‘A’, ‘B’, …); ‘parameters’ – additional parameter variables (can 

be nil); ‘f’ – basis function expression (depending on specified variables, coefficients and 

parameters). 

 

Besides the nonlinear basis, a special nonlinear approximator must be used for nonlinear least 

squares. The GaussNewtonLeastSquares is recommended for this purpose.  

 

Here is the code of a nonlinear least squares approximation example: 

 

// Example of Nonlinear basis approximation. 

// List of variable names (1 variable 'x' for 1D approximation). 
string[] variables = new[] { "x" }; 
// List of basis coefficient names (2 coefficients). 
string[] coefficients = new[] { "A", "B" }; 
// Basis function for approximation - nonlinearly depending on the coefficients. 
string func = "sin(A*x)*e^(B*x)"; 
// Create the basis with the specified parameters. 
NonlinearBasis basis = new NonlinearScalarBasis(variables, coefficients, null, func); 
NonlinearApproximator approximator = new GaussNewtonLeastSquares(); // Gauss Newton Least Squares 
approximator. 
approximator.C0 = new[] { 0.0, -1.0 }; // Set up initial guess for coefficients. 
SolverOptions opt = new SolverOptions(); 

https://en.wikipedia.org/wiki/Non-linear_least_squares
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opt.MaxIterationCount = 100; 
opt.Precision = 0.002; 
approximator.Options = opt; // Set up the appropriate nonlinear solution options. 
double[] cValues = approximator.Approximate(basis, vData, fData); // Calculate the optimal basis 
coefficients. 
SolutionResult res = approximator.SolutionResult; // Nonlinear solution result can be used to analyse the 
convergence. 
double[] eValues; 
double aerr = approximator.Error(basis, vData, fData, cValues, out eValues); // Calculate the final 
approximation error. 
// Use the basis with optimal coefficients. 
 

The approximation algorithm consists of the following steps: 

1. Create the array of variable names (containing one value ‘x’ for one dimensional case). 

2. Create the array of nonlinear basis coefficient names. 

3. Set up one basis function, depending on the variables, coefficients and optionally on 

parameters. 

4. Create the basis instance with specified parameters. 

5. Create the approximator instance. 

6. Set up the initial guess for the coefficient values. 

7. Set up the appropriate nonlinear solution options. 

8. Find the approximation coefficients. 

 

The nonlinear approximation algorithm is slightly complicated than the linear one. It requires 

setting the initial guess for the approximation coefficients and the appropriate nonlinear 

solution options (such as the solution precision). Nonlinear least squares approximation uses 

nonlinear iterative solvers for finding the optimal coefficient values. The convergence of the 

process depends on the initial guess for the unknown variables. It is recommended to set up the 

initial guess for the solution accurately (close to the optimal values), based on some special 

knowledge of the problem. The base class NonlinearApproximator has special property 

‘SolutionResult’ that is assigned after call of the ‘Approximate’ method. The structure contains 

data about the solution convergence and can be used for analyzing the nonlinear approximation 

convergence. 

Numerical integration 

The numerical integration tool allows calculating definite integrals for one- and two- 

dimensional functions. The numerical algorithms of integration realized in 

Mathematics.Integration. The base classes for 1D and 2D integration are Integrator1D and 

Integrator2D accordingly. They have the following functions for definite integral calculation: 

 

public abstract double Integral(Function1D f, double x1, double x2, int n); 
 

public abstract double Integral(Function2D f, double x1, double x2, double y1, double y2, int nx, int ny); 
 

The input parameters for the functions are the method references to the integrand functions, 

limits of integrations and the number of integration nodes. The return value in the definite 

integral of the specified function over the specified integration region. 

 

There are the following realized integrator classes for 1D integration: RectIntegrator, 

SimpsonIntegrator, Gauss2NodeIntegrator, Gauss3NodeIntegrator; and the following for 2D case: 

BrickIntegrator, Gauss4NodeIntegrator2D, Gauss9NodeIntegrator2D. 

 

For using analytical capabilities with the integration tool, there are the classes of symbolic 

functions, realized in the Analytics.Numerics.Functions unit. The classes are SymbolicFunction1D 

and SymbolicFunction2D for one- and two- dimensional cases accordingly. They have the following 

constructors: 

 

public SymbolicFunction1D(string v, string f, Variable[] parameters) 

public SymbolicFunction2D(string v1, string v2, string f, Variable[] parameters) 

 

The variable names, analytical function expression and additional parameter variables must be 

specified for construction. The classes have the methods for evaluating them in any point which 

can be used for numerical integration: 

 

public double F(double v) 

public double F(double x, double y) 

 

Below here is the code for example of numerical integration of 1D function: 

 

Integrator1D integrator = new Gauss3NodeIntegrator(); 
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SymbolicFunction1D sf1D = new SymbolicFunction1D("x", "sin(x)*e^(x^2/8)"); // Create the symbolic function 
instance for integration. 
double ivalue = integrator.Integral(sf1D.F, x1, x2, n);   // Integrate the function with the integrator. 
// Code for using integral value ‘ivalue’ 

 

The integration algorithms is simple: create the appropriate integrator; create the integrand 

function instance; calculate the definite integral value.  

Ordinary differential equation solution 

This tool allows solving initial value problems 

(https://en.wikipedia.org/wiki/Initial_value_problem) for the systems of ordinary differential 

equations. The numerical solution algorithms realized in the Mathematics.ODE.Solver unit. The 

base abstract class for solving the problems is ODESolver. And the only its method is: 

 

public abstract double[][] Solve(ODESystem system, double[] y0, double t1, int N, ref double[] t); 
 

The method solves the initial value problem for specified ODE system
7
, initial condition and time 

interval. The result of the solution is the array of function values on each time strep (the time 

steps returned as var method parameter). 

 

There are the following classes implementing the ODE solver functionality: EulerSolver, 

RungeKutta4Solver, FehlbergSolver. 

 

The Solve method requires the instance of the ODESystem (defined in the Mathematics.ODE.System 

unit) class as the first parameter. The main method of the class is the following: 

 

public abstract double[] Evaluate(double t, double[] y); 
 

The method evaluates the equations of the system for the specified variable value and functions 

values. 

 

For using analytical capabilities with the ODE solution tool, there is the base abstract class of 

the symbolic ODE function - AnalyticalODE. Its implementation ScalarODE has the following 

constructor: 

 

public ScalarODE(string v, string[] fv, string[] equations, Variable[] parameters) 

 

where ‘v’ is the variable name; ‘fv’ is the unknown function names; ‘equations’ is the array of 

analytical expressions representing the equations. 

 

As an example, let us consider the solution of the initial value problem for one ordinary 

differential equation. The code for the example is the following: 

 

// Create the ODE solver. 
ODESolver solver =  new RungeKutta4Solver(); 
string[] fv = new string[1]{ "y" };            // Create the arrays, containing one 
string[] equations = new[1]{ "2*sin(t)+t/y" }; // element only, because we solve here 
double[] y0 = new double[1] { y10 };           // the initial problem for one ODE. 
ODESystem ode = new ScalarODE("t", fv, equations, null); // Create the ODE system containing one equation. 
double[] t = null; 
double[][] y = solver.Solve(ode, y0, t1, N, ref t); // Solve the problem with the specified initial 
condition, 
// Use the ‘y’ solution. 
 

The example demonstrates common steps for the initial value problem solution: create the 

analytical ODE system with specified equation expressions; select the appropriate solver; specify 

the initial values; solve the system with specified time interval and number of discrete steps. 

 

NOTE: the number of returned time and function values can differ from the specified time steps. 

There are automatic time step solvers, like Fehlberg’s method, which select the step by some 

precision formula. The only thing guaranteed is that the last time value is more or equal to the 

specified. The precision of the step selected can be specified using the ‘StepTolerance’ property 

of the solver’s class. 

Another implementation of the analytical ODE system VectorODE is intended for modeling systems 

set up in ‘matrix’ form (https://en.wikipedia.org/wiki/Matrix_differential_equation). The class 

has the following constructor: 

 

public VectorODE(string v, string fv, string equation, int dimension, Variable[] parameters) 

                               
7 All equation must specify the ODE of the first order. The systems of higher orders must 

be transformed first to the equivalent systems of the first order. 

https://en.wikipedia.org/wiki/Initial_value_problem
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The constructor requires one unknown function name and one equation. The unknown function is 

supposed to be an array of float values as well as the equation return. The extension package 

‘Analytics.LinearAlgebra’ must be initialized to support all array/matrix operations. 

 

The following code demonstrates an example of solving an initial value problem for a vector ODE 

system: 

 

// Example of solving a Vector ODE system. 
double t1 = 3.0; // The end value of the interval for solution. 
int N = 1000;    // The number of steps for interval discretization. 
// Parameter variables: 
double[,] ma = new double[2,2] 
{ 
    {3, -4  },  
    {4, -0.7} 
}; 
Variable A = new RealMatrixVariable("A", ma); // A-matrix. 
double[] vb = new double[2] {-1, 1}; 
Variable B = new RealArrayVariable("B", vb); // B-vector. 
Variable[] prms = new Variable[]{A, B}; 
double[] y0 = new double[2] {1.0, -1.0}; // Initial conditions. 
// Use the Fehlberg (Fehlberg-Runge-Kutta 4-5) solver. 
ODESolver solver = new FehlbergSolver(); 
ODESystem ode = new VectorODE("t", "y", "A×y+B/(t^2+1)", 2, prms); // Create the Vector ODE system with 
the specified parameters. 
double[] t = null; 
double[][] y = solver.Solve(ode, y0, t1, N, ref t); // Solve the problem with the specified initial 
condition, 
                                                    // integration interval and number of discretization 
steps. 
// Use the y solution. 
 

As can be seen from the code above, the matrix/array parameters must be created and added to the 

ODE system constructor. This is because the result of the equation must be array of float values. 

The constructor parameter must also directly provide the dimension of the system. But only one 

equation required to set up the system. 

Function analysis 

The analysis tool provides functionality for finding roots and extremum points for univariate 

functions. The base abstract class for function root search is RootFinder defined in the 

Mathematics.Analysis unit. It has the following function: 

 

public abstract SolutionResult Solve(Function1D f, Function1D df, double x1, double x2, SolverOptions opt, 
ref double xr); 
 

The function solves the nonlinear equation f(x)=0 for the specified univariate function, interval 

and solution options (defining the precision, maximum iteration count and so on). The returned 

result contains the information about solution convergence, made iterations and so on. The found 

root returned via ref ‘xr’ parameter. 

All solvers requires a delegate of type Function1D (defined in the Mathematics.Numerics). Some 

solvers require also the reference to the derivative function. The method DerivativeRequired of 

the class defines if the derivative required for the solver. 

 

There are the following classes, implementing the root search: Bisection, Secant, Newton. 

 

NOTE: All algorithms for root search can find only one root on the specified interval. The 

convergence depends on the algorithm and the specified parameters. 

 

The SymbolicFunction1D class (defined in the Analytics.Numerics.Functions unit) provides the 

functionality for finding roots of the analytical functions, including automatic derivative 

calculation. 

 

The simple code example for finding a root of a function is the following: 

 

// Create the root finder. 
RootFinder solver = new Newton(); 
SymbolicFunction1D sf1D = new SymbolicFunction1D("x", "sin(x^2)*e^-x"); // Create the symbolic function 
instance for analysis. 
Function1D fm = sf1D.F; 
SymbolicFunction1D dsf1D = null; 
Function1D dfm = null; 
if (solver.DerivativeRequired()) // If the solver requires derivative evaluation - 
{ 
    dsf1D = sf1D.Derivative(); // get the derivative instance. 
    dfm = dsf1D.F; 
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} 
 
SolverOptions opt = new SolverOptions();     // Default options for the solver. 
double xr = double.NaN; 
SolutionResult sr= solver.Solve(fm, dfm, x1, x2, opt, ref xr); // Finding root with the selected solver 
and specified parameters. 
// Use the xr root value. 
 

The example consists of the following steps:  

1. Select the appropriate solver. 

2. Create the instance of the symbolic function and get its derivative. 

3. Set up the options for the solver. 

4. Solve the nonlinear equation. 

 

The class FunctionAnalyser from the Analytics.Numerics.Analysis unit provides advanced 

functionality – it allows finding many roots and extremums on some interval. Let us consider an 

example of the analysis. 

 

RootFinder solver = new Newton(); 
SymbolicFunction1D sf1D = new SymbolicFunction1D("x", "sin(x^2)*e^-x"); // Create the symbolic function 
instance for analysis. 
SolverOptions opt = new SolverOptions();     // Default options for the solver. 
FunctionPoint[] points = FunctionAnalyser.Analyse(sf1D, solver, opt, 1.0, 3.0, 10); // Finding all 
function special points. 
// Use the ‘points’ result. 
 

In the code above, the Analyse method divides the specified interval [1.0..3.0] by 10 uniform 

subintervals and try to find a root and an extremum on each of them. The result is the array of 

found special points. Each point contains variable value, function value and the type – root, 

minimum or maximum. 

Nonlinear equation systems solution 

The base abstract class for solving nonlinear equation systems is the NonlinearSolver defined in 

the Mathematics.NL.Solver unit. It has the following method: 

 

public abstract SolutionResult Solve(NonlinearSystem system, double[] x0, SolverOptions opt, ref double[] 
x); 
 

where ‘system’ is the definition of a nonlinear equation system; ‘x0’ is the initial guess for 

solution; ‘options’ specifies such parameters as precision, number of iterations and so on. The 

method returns as result the information about solution convergence. The found root of the system 

returned as the ref ‘x’ parameter. 

 

There implemented nonlinear solver class is NewtonRaphsonSolver. 

 

The class AnalyticalSystem from the Analytics.Numerics.Nonlinear implements full functionality 

for definition of nonlinear systems in symbolic form, including analytical Jacobian calculation. 

 

Here is the code of example for solving three-dimensional nonlinear system, which comes from the 

problem of intersection of three nonlinear surfaces. 

 

RealVariable R = new RealVariable("R", 1); // Variable for the radius value 

string[] variables = new[] { "x", "y", "z" };  // equations' variables 
string[] equations = new[] { "x^2+y^2+z^2-R^2",// sphere  
                             "x^2+y^2-z",      // paraboloid equation - along x-axis  
                             "-x+2*y^2+z^2"    // paraboloid equation - along z-axis 
                            }; 
Variable[] parameters = new[] { R };           // equations' parameters 
AnalyticalSystem system = new AnalyticalSystem(variables, equations, parameters); // nonlinear equation 
system 
double[] x0 = new[] { 1.0, 1.0, 1.0 };              // initial guess for solution 
SolverOptions options = new SolverOptions();        // default solution options 
NonlinearSolver solver = new NewtonRaphsonSolver(); // Newton-Raphson solver 
double[] x = null; 
SolutionResult r = solver.Solve(system, x0, options, ref x); // solving the system 
// Use the ‘x’ result. 

 

The solution algorithm is simple: construct the analytical system instance with provided arrays 

of variable names and equations; set up the initial guess and options for the solution; create 

the solver instance; solve the problem for the specified data.  
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ANALYTICS Linear Algebra 

 The ANALYTICS Linear Algebra extension library introduces features to implement 

analytical calculations with 3D vectors and tensors and n-dimensional vectors and rectangular 

matrices. The following features realized8: 

1. Variable types: Vector3DVariable, Tensor3DVariable. 

2. Overloaded operators for Vector3D operands: ‘•’ (dot product). 

3. Overloaded operators for Tensor3D operands: ‘’’ (transpose), ‘^’ (power). 

4. Overloaded operators for Array/Matrix operands: 

- Addition operations ‘+’, ‘-‘ for Array and Matrix operands implemented by rows – 

the array elements added to (subtracted from) each matrix row. 

- Number operator ‘#’: number of elements in an array or a matrix. 

- Cross product ‘×’ of Arrays and Matrices implemented with common vector/matrix 

rules. For two matrices it is the matrix multiplication. For two arrays it is the 

outer product – result is a matrix. For mixed array/matrix operands: when array is the 

first operand it is treated as a ‘row-vector’, when it is the second operand – as a 

‘column-vector’. 

- Multiplication ‘*’ of Arrays and Matrices implemented as ‘by-element’ operation. 

When applied for mixed Array/Matrix operands the by-component operation is implemented 

by rows (as addition or subtraction). 

- The dot product operation ‘•’ defined for Array operands only and follows common 

rules of linear algebra. 

- Division ‘/’ of Arrays and Matrices implemented as ‘by-element’ operation (see 

multiplication operator). 

- The power ‘^’ operation for arrays and matrices is implemented by components. 

- Minus operator ‘-’: sign inverse of elements. 

- Square root operator ‘√’: square root of elements. 

- Sum operator ‘∑’: sum of an array elements; sum of a matrix rows (array). 

- Delta operator ‘∆’: finite difference D[i]=A[i+1]-A[i] for array elements; for a 

matrix the operator evaluates by each row. 

- Product operator ‘∏’: product of an array elements; product of a matrix rows 

(array). 

- Apostrophe operator ‘'’: transposition of a matrix. 

-   Accent operator ‘`’: inverse of a matrix (applicable for square matrices only). 

- Absolute operator ‘||’: absolute values of array or matrix elements. 

- Norm operator ‘‖ ‖ ’: vector L2 norm of an array or a matrix. 
5. Elementary and base special functions (see Appendix A) are applicable for array/matrix 

arguments. These functions apply the evaluation to every component of an array or a 

matrix and return an array or a matrix of the same size. 

6. Functions for Vector3D arguments/parameters: Vector (creates vector by real 

components), Length, Dot, Cross, Angle, Distance, Direction, Normal, Area. 

7. Functions for Tensor3D arguments/parameters: Tensor (creates tensor by real 

components), Invariant1, Invariant2, Invariant3, Transpose, Inverse, Symmetric, 

Antisymmetric, Invariant1, Solve (solves linear equation system). 

8. Functions for Vector (n-dimensional) arguments/parameters: Min, Max, Length, Range. 

9. Functions for Matrix (rectangular) arguments/parameters: Min, Max, RowCount,  

ColumnCount, Diagonal, Antidiagonal, Row, Column, Range, Transpose, Inverse, Minor, 

Determinant, Adjoint, Solve (solves linear equation system). 

10. Additional types: StringVector, StringTensor. These special classes implement 

‘analytical’ vector and tensor (their components are string expressions, all 

operations implemented in analytical form). 

11. Other functions for Array/Matrix arguments: 
CumSum(X) – cumulative sum of the array (for matrix it is evaluated for each separate 

row). 

CumProduct(X) – cumulative product of the array (for matrix it is evaluated for each 

row). 

Outer(X Y) – outer product of two arrays, the result is the matrix. 

det(M) – determinant of a square matrix. 

tr(M) – trace of a square matrix. 

adj(M) – adjoint of a square matrix. 

cond(M) – condition number of a square matrix (using L2 norm). 

pinv(M) – pseudo-inverse of a rectangular matrix. 

 

Logical array and matrix operations 

 The Linear Algebra extension also introduces operations with logical array and matrices 

(containing Boolean values) and comparison operations with Real/Array/Matrix values. 

 The following logical operators supported for logical array and matrix operands: not  

‘¬’, or ‘\’, and ‘&’. The comparison operations are: ‘≡’, ‘≈’, ‘≠’, ‘>’, ‘<’, ‘≥’, ‘≤’. The 

logical and comparison operations are element-wise ones, the operation’s result is logical array 

or matrix of the same size as operands are. Binary operations also supported when one of the 

operands is a scalar value. The multiplication operator ‘*’ also applicable for real/array/matrix 

operand and logical array/matrix. The operation is equivalent to the element-wise multiplication 

for logical values ‘true’=1 and ‘false’=0. 

 The following functions, described above, are also applicable for the logical arrays and 

matrices: Range, RowCount,  ColumnCount, Row, Column; and constructors Array, Matrix.  

                               

8  ANALYTICS Linear Algebra library depends on MATHEMATICS library because it uses special 

types, such as Vector3D, Tensor3D and so on, from it. As these special types implement operators 

overloading for base mathematical operations, extension library introduces only additional 

operators (‘explicitly’ overloaded operators used automatically). 
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The special function Count{x}(A) returns the number of ‘x’ values (true or false) in logical 

array ‘A’. There are special variants of ‘if’ function for the real arrays and matrices with 

logical parameter: if{B}(X Y). Here the ‘B’ parameter is logical array or matrix of the same size 

as the ‘X’ and ‘Y’ arguments – real arrays or matrices. The result is also real array or matrix, 

which elements are the results of element-wise ‘if’ function. 

ANALYTICS Fractions 

 The ANALYTICS Fractions extension library implements analytical operations with Common 

(simple) fractions. The following features realized: 

1. Common Fraction Literal: the library introduces support of parser to recognize 

fraction literals. After the literal is registered it recognizes the expression ‘a/b’ 

as fraction if ‘a’ and ‘b’ are integer numbers. NOTE: due to precedence of operators, 

the fraction literal must be enclosed by parentheses, if the operators outside have 

the higher or the same precedence as ‘/’ operator does. For an example, ‘2/3+4/2’ – 

parentheses NOT obligatory, ‘(2/3)*(4/2)’ – parentheses ARE obligatory. 

2. Variable type: FractionVariable. 

3. Overloaded operators for Fraction operands: ‘^’ (power), ‘~’ (conversion to real 

value), ‘’’ (inversed fraction) and all standard binary algebraic and relational 

operators. 

4. Overloaded standard binary algebraic operators for Real-Fraction and Complex-Fraction 

operands and overloaded relational operators for Real-Fraction operands. 

5. Functions for Fraction arguments: Fraction (constructs fraction from numerator and 

denominator or converts double value to common fraction), Numerator, Denominator, Real 

(converts fraction to real value), frac (fractional part of a common fraction), int 

(integer part of a common fraction), sgn (sign of a fraction). 

ANALYTICS Complex 

 The ANALYTICS Complex extension library implements operations with Complex numbers. As 

was said above, ANALYTICS library supports Complex literals by default. Also, ANALYTICS library 

supports ‘explicit’ operator overloading. So, some operations with complex numbers are available 

without any extension library. As an example, the expression ‘(2-I)*(3+2I)’ can be evaluated 

correctly. But the default functionality is limited by literal expressions with operators those 

can be ‘explicitly’ overloaded. 

 The ANALYTICS Complex library introduces the following features: 

1. Variable types: ComplexVariable, ComplexArrayVariable, ComplexMatrixVariable, 

ComplexBlockVariable. 

2. Overloaded operators for Complex operands: ‘^’ (power), ‘~’ (conjugate), ‘’’ 

(reciprocal). 

3. Overloaded binary operators for Complex-Real operands: ‘+’, ‘-’, ‘*’, ‘/’, ‘^’. 

4. Functions for Complex and Complex-Real arguments/parameters: Complex and Polar (create 

complex number by Real arguments), Conjugate, Reciprocal, Re (real part), Im 

(imaginary part), Arg (argument), abs (absolute), sqrt (square root), root (n-th 

root), pow (power), log (logarithm), ln (natural logarithm), lg (decimal logarithm), 

lb (binary logarithm), exp (exponent), trigonometric functions (sin, cos, tan), 

inverse trigonometric functions (arcsin, arccos, arctan), hyperbolic functions (sinh, 

cosh, tanh), inverse hyperbolic functions (arcsinh, arccosh, arctanh). For entire list 

of elementary and base special functions see Appendix A. 

5. Overloaded operators for Complex arrays and matrices (see ANALYTICS Linear Algebra 

extension). 

6. By-element elementary and base special functions for Complex arrays and matrices (see 

ANALYTICS Linear Algebra extension). 

7. Overloaded operators for Logical/Complex Arrays/Matrices (see ANALYTICS Linear Algebra 

extension). 

 

ANALYTICS Mathphysics 

 The ANALYTICS Mathphysics extension library introduces features to work with physical 

entities (units of measurement and physical values)9 in analytical expressions. The following 

features realized: 

1. Literal types: the library supports following literals – unit literal, scalar value 

literal, vector value literal and tensor value literal. Unit literal is sequence of 

symbols, representing valid notation of a unit of measurement. As there is a lot of 

unit names and prefixes, and the unit notation is ‘rather close’ to mathematical 

expression notation (used in ANALYTICS library) unit literals MUST BE ENCLOSED in 

triangle braces ‘‹›’10. The examples of valid unit literals: ‘‹mm^2›’, ‘‹m kg/s^2›’, 

‘‹m kg s^-2›’. The scalar value literal is a real number (literal) with associated 

unit of measurement. In other words – Real literal + Unit literal. The real literal 

and the unit can be separated by space ‘ ’ or can be NOT separated. The examples of 

valid scalar value literals: ‘4‹m/s›’, ‘2.2‹m kg s^-2›’, ‘-3 ‹m/s^2›’. NOTE: as the 

space symbol ‘ ’ used in unit literals instead of product symbol (for notation being 

                               

9  ANALYTICS Mathphysics library depends on PHYSICS library. For total information about 

units of measurement and physical values see PHYSICS manual. 
10  Do not confuse symbols of triangle braces ‘‹›’ with keyboard symbols ‘<’ – less and ‘>’ 

– more. 
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close to human) but in ANALYTICS library the symbol used for argument separator, the 

unit (or scalar value) literal should be enclosed in additional parenthesis when used 

as function parameter/argument. Vector value literal is vector literal and unit 

literal separated (optionally) with space. Vector literal is three real literals 

(vector components) separated with spaces and enclosed in parentheses. Tensor value 

literal is again tensor literal and unit literal. Tensor literal is like vector 

literal but contain nine real literals (components, positioned by rows). Examples of 

correct literals: vector value ‘(1 0 -1) ‹m/s›’, tensor value ‘(1 0.3 -1 -0.3 2 0.4 1 

-0.4 3) ‹N/mm^2›’. 

2. Variable types: UnitVariable, PhysicalScalarVariable, PhysicalVectorVariable, 

PhysicalTensorVariable. 

3. Overloaded operators for Scalar-Unit-Real operands: ‘+’, ‘-’, ‘*’, ‘/’, ‘^’ (power – 

integer, including negative values). 

4. Functions for Scalar-Unit-Real arguments/parameters: Convert (converts values from one 

unit to another), Value (the Real value of physical scalar), Unit (the unit of 

physical scalar). 

5. Overloaded operators for Vector-Unit-Real operands: ‘+’, ‘-’, ‘*’, ‘/’, ‘•’ (dot 

product of vector values). 

6. Overloaded operators for Tensor-Vector-Unit-Real operands: ‘+’, ‘-’, ‘*’, ‘/’, ‘^’ 

(power – integer, including negative values), ‘'’ (transpose tensor). 

7. Functions for Vector and Tensor arguments/parameters: Vector (creates physical vector 

value). Tensor (creates physical tensor value). 

 

ANALYTICS Special 

 The ANALYTICS Special extension library introduces possibility of calculating special 

functions in analytical expressions. The following functions realized: P – Legendre’s polynomial  

and associated Legendre’s polynomial of the first kind, J₀, J₁, Y₀, Y₁, I₀, I₁, K₀, K₁ – Bessel 
functions and modified Bessel functions of the first and second kind (of order 0 and 1). 

 The Special extension library introduces derivative rules for all special functions 

written above. In addition, derivative rules defined for: Jn, Yn, In, Kn (Bessel functions of 

order n), Q – Legendre’s polynomial and associated Legendre’s polynomial of the second kind, Β – 

beta function and incomplete beta function, Γ – gamma, incomplete and logarithmic gamma function, 

ψ – digamma and polygamma function, erf – error function, erfc – complementary error function. 
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 Appendix A. Analytics operators and functions 
 Table A.1. List of operators, defined in ANALYTICS library. 

Operator Symbol Type Derivative11 

  Logical And              &    Binary     False    

  Logical Or               \    Binary     False    

  Identically equal     ≡    Binary     False    

  Approximately equal   ≈    Binary     False    

  Not equal         ≠    Binary     False    

  Greater          >    Binary     False    

  Less             <    Binary     False    

  Greater or equal   ≥    Binary     False    

  Less or equal      ≤    Binary     False    

  Add            +          Binary     True     

  Subtract       -          Binary     True     

  Multiply       *          Binary     True     

  Divide         /          Binary     True     

  Dot            •          Binary     False    

  Cross            ×          Binary     False    

  Power          ^          Binary     True     

  Left arrow        ←   Binary     False    

  Right arrow       →   Binary     False    

  Up arrow          ↑   Binary     False    

  Down arrow        ↓   Binary     False    

  Left-right arrow   ↔   Binary     False    

  Up-down arrow      ↕   Binary     False    

  Logical Not              ¬   Unary, Prefix      False    

  Question         ?   Unary, Prefix      False    

  Number           #   Unary, Prefix      False    

  Minus          -          Unary, Prefix      True     

  Tilde          ~          Unary, Prefix      False    

  Square Root   √   Unary, Prefix      True     

  Derivative    ∂   Unary, Prefix      True     

  Integral      ∫   Unary, Prefix      True     

  Delta         ∆   Unary, Prefix      True    

  Sum           ∑   Unary, Prefix      True     

  Product       ∏   Unary, Prefix      False    

  Factorial      !          Unary, Postfix      False    

  Apostrophe     '          Unary, Postfix      False    

  Accent     `          Unary, Postfix      False    

                               

11  If derivative is not defined for some operator, you can still use it in expressions and 

get symbolic derivative for this expression in the case when operand(s) for the operator do not 

depend on variable. Dot operator may not be used in symbolic derivation process in any case. 
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Operator Symbol Type Derivative11 

  Absolute   ||   Unary, Outfix      True     

  Norm   ‖ ‖    Unary, Outfix      False     

 

 

 Table A.2. List of basic functions, defined in ANALYTICS library. 

Function12 Name Example Derivative13 

Absolute value  abs       abs(x)        sgn(x)                                 

Signum R  sgn        sgn(x)        2*delta(x)                             

Dirac delta function R  delta  delta(x)  not defined 

Heaviside step function R  H          H(x)          delta(x)                               

If (conditional) function  if if{x>0}(x x^2)  if{x>0}(1 2*x) 

Ceiling function R  ceil  ceil(x)  not defined 

Floor function R  floor  floor(x)  not defined 

Fractional part R  frac  frac(x)  not defined 

Sine  sin        sin(x)        cos(x)                                 

Cosine  cos        cos(x)       -sin(x)                                

Tangent  tan        tan(x)        1/cos(x)^2                             

Cotangent  cotan      cotan(x)     -1/sin(x)^2                            

Secant  sec        sec(x)        sin(x)/cos(x)^2                        

Cosecant  cosec      cosec(x)     -cos(x)/sin(x)^2                       

Inverse sine  arcsin     arcsin(x)     1/(1-x^2)^(1/2)                        

Inverse cosine  arccos     arccos(x)    -1/(1-x^2)^(1/2)                       

Inverse tangent  arctan     arctan(x)     1/(1+x^2)                              

Inverse cotangent  arccot     arccot(x)    -1/(1+x^2)                             

Inverse secant  arcsec     arcsec(x)     1/(x^2*(1-1/x^2)^(1/2))                

Inverse cosecant  arccsc     arccsc(x)    -1/(x^2*(1-1/x^2)^(1/2))               

Hyperbolic sine  sinh       sinh(x)       cosh(x)                                

Hyperbolic cosine  cosh       cosh(x)       sinh(x)                                

Hyperbolic tangent  tanh       tanh(x)       1/cosh(x)^2                            

Hyperbolic cotangent  coth       coth(x)      -1/sinh(x)^2                           

Hyperbolic secant  sech       sech(x)      -(tanh(x)*sech(x))                     

Hyperbolic cosecant  cosech     cosech(x)    -(coth(x)*cosech(x))                   

Inverse hyperbolic sine  arsinh     arsinh(x)     1/(x^2+1)^(1/2)                        

Inverse hyperbolic cosine  arcosh     arcosh(x)     1/(x^2-1)^(1/2)                        

Inverse hyperbolic tangent  artanh     artanh(x)     1/(1-x^2)                              

Inverse hyperbolic 

cotangent  arcoth     arcoth(x)     1/(1-x^2)                              

Inverse hyperbolic secant  arsech     arsech(x)    

-1/((x^2*(1/x-

1)^(1/2))*(1/x+1)^(1/2)) 

Inverse hyperbolic 

cosecant  arcsch     arcsch(x)    -1/(x^2*(1+1/x^2)^(1/2))               

Logarithm to base  log     log{a}(x)     1/(ln(a)*x)                            

Natural logarithm  ln         ln(x)         1/x                                    

Decimal logarithm  lg         lg(x)         1/(ln(10)*x)                           

Binary logarithm  lb         lb(x)         1/(ln(2)*x)                            

                               

12  Most of the basic functions support real and complex arguments/parameters. If some 

function does not support complex numbers – it is marked with ‘R’. 
13  If derivative is not defined for some function, you can still use it in expressions and 

get symbolic derivative for this expression in the case when arguments/parameters for the 

function do not depend on variable. 
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Function12 Name Example Derivative13 

Exponent  exp        exp(x)        exp(x)                                 

Square root  sqrt       sqrt(x)       1/(2*x^(1/2))                          

Root (with index)  root  root{a}(x)    (1/a)*x^(1/a-1)                        

Power  pow  pow{a}(x)     a*x^(a-1)                              

BetaD function14 
 Β     Β(x y)     Β(x y)*(ψ(x)-ψ(x+y))                                

Incomplete BetaD 
 Β  Β{n m}(x)  x^(n-1)*(1-x)^(m-1)                                 

GammaD function 
 Γ      Γ(x)       Γ(x)*ψ(x)                                           

Logarithm of GammaD 
 Γlog    Γlog(x)    ψ(x)                                                

Incomplete gammaD 
 Γ    Γ{n}(x)   -(x^(n-1)*e^-x)                                     

Digamma functionD 
 ψ      ψ(x)       ψ{1}(x)                                             

PolygammaD function 
 ψ    ψ{n}(x)    ψ{n+1}(x)                                           

ErrorR function  erf     erf(x)     (2/π^(1/2))*e^-(x^2)                                

ComplementaryR error  erfc    erfc(x)   (-2/π^(1/2))*e^-(x^2)                               

Inversed error functionR  erfi   erfi(x)  √π/2*e^(erfi(x)^2)  

BesselR function of order 

0 

 J₀       J₀(x)      -J₁(x)                                              

BesselR function of order 

1 

 J₁       J₁(x)       J₀(x)-J₁(x)/x                                       

BesselR function of the 

second kind, order 0 

 Y₀       Y₀(x)      -Y₁(x)                                              

BesselR function of the 

second kind, order 1 

 Y₁       Y₁(x)       Y₀(x)-Y₁(x)/x                                       

Modified BesselR function 

of order 0 

 I₀       I₀(x)       I₁(x)                                               

Modified BesselR function 

of order 1 

 I₁       I₁(x)       I₀(x)-I₁(x)/x                                       

Modified BesselR function, 

second kind, order 0 

 K₀       K₀(x)      -K₁(x)                                              

Modified BesselR function, 

second kind, order 1 

 K₁       K₁(x)      -K₀(x)-K₁(x)/x                                      

BesselD function of order 

n 

 J    J{n}(x)   -J{n+1}(x)+n*(J{n}(x)/x)                            

BesselD function of the 

second kind, order n 

 Y    Y{n}(x)   -Y{n+1}(x)+n*(Y{n}(x)/x)                            

ModifiedD Bessel function 

of order n 

 I    I{n}(x)    I{n+1}(x)+n*(I{n}(x)/x)                             

ModifiedD Bessel function, 

second kind, order n 

 K    K{n}(x)   -K{n+1}(x)+n*(K{n}(x)/x)                            

Legendre polynomialR 

 P    P{n}(x)   ((n+1)/(x^2-1))*(P{n+1}(x)-

x*P{n}(x))               

Legendre polynomialR of 

the second kind 

 Q    Q{n}(x)   ((n+1)/(x^2-1))*(Q{n+1}(x)-

x*Q{n}(x))               

Associated Legendre 

polynomialR 

 P  P{n m}(x) (((n+1)-m)*P{n+1 m}(x)-

((n+1)*x)*P{n m}(x))/(x^2-1) 

Associated Legendre 

polynomialR of the second 

kind 

 Q  Q{n m}(x) (((n+1)-m)*Q{n+1 m}(x)-

((n+1)*x)*Q{n m}(x))/(x^2-1) 

                               

14  For all functions, marked with ‘D’ symbol, only symbolic derivatives defined, they cannot 

be evaluated. 


